Supplementary Material

Research on the sustainable effect of ZnS and MoS_2 decorated biochar nanocomposites for removing quinolones from antibiotic-polluted aqueous solutions

Ying-Jie Gan^A, *Yue-hui Wang*^{A,B}, *Ya-ru Dang*^{A,B}, *Wen-jie Hao*^A, *Zheng-rong Hu*^A, *Zhi-wei Zhang*^{A,B,C}, *Yu-min Luo*^D, *Yan-bo Wu*^D, *Ai-jun Song*^{A,B,*} and *Zhong-bao Zhao*^C

^AChemical Engineering College, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, PR China

^BInstitute of Applied Photochemistry, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, PR China

^CHebei University of Environmental Engineering, Qinhuangdao, 066600, PR China

^DSin-Arab Chemical Fertilizers Co. Ltd, Qinhuangdao, 066003, PR China

*Correspondence to: Email: saj92@163.com

The field emission scanning electron microscope (SEM, SU8010, Japan) equipped with an energydispersive X-ray analyzer (EDS, SU8010, Japan) was used to examine the surface morphology and elemental compositions of the ZMMBC. The structural details of the composite were characterized by transmission electron microscopy (TEM). The X-ray diffraction (XRD, D/MAX2500PC) to characterize the crystal structures of as-synthesized composite. The specific surface area and pore characteristics were calculated based on the N₂ adsorption–desorption isotherms at 77.3 K by BET. Fourier transform infrared spectrum (FT-IR) in the range of 4000–400 cm⁻¹ was performed in KBr pellet by TENSOR-27 Spectrometer (Germany). The Binding energy of material elements was conducted based on the X-ray photoelectron spectroscopy (XPS, AXIS NOVA), and C 1s is calibrated at 284.8 eV.

Fig. S1. The N_2 adsorption desorption isotherm and pore size distribution curves of ZMMBC before and after adsorption.

Fig. S2. FTIR spectra of ZMMBC before and after adsorption.

Fig. S3. Effect of solid/liquid ratio on adsorption capacity of ZMMBC for PF, LF and NF.

Fig. S4. Thermodynamic ΔG and T diagram of ZMMBC.

Adsorption kinetics model	Parameter	PF	LF	NF
Pseudo-first-order	<i>k</i> ₁ (min ⁻¹)	0.2328	0.2829	0.2121
	<i>R</i> ²	0.9912	0.9979	0.9796
	<i>q</i> _e (mg g ⁻¹)	193.54	123.57	134.53
Pseudo-second-order	<i>K</i> ₂ (g mg ⁻¹ min ⁻¹)	0.0033	0.0093	0.0034
	<i>R</i> ²	0.9979	0.9997	0.9924
	<i>q</i> _e (mg g ⁻¹)	199.79	125.84	140.50
Liquid film diffusion	<i>K</i> f (h⁻¹)	0.03729	0.05532	0.02788
	Α	-1.6849	-2.0604	-1.4003
	<i>R</i> ²	0.9940	0.9829	0.9539
Intra particle diffusion	$K_{\rm d}$ (mg g ⁻¹ h ^{-1/2})	0.4847	0.3078	0.4582
	С	177.7344	116.0916	119.4983
	<i>R</i> ²	0.8574	0.9057	0.9142

 Table S1.
 Adsorption kinetics fitting parameters of PF, LF and NF on ZMMBC.

Isotherm	Temperature		Langmuir			Freundich		
models (K)	<i>q</i> _m (mg g⁻¹)	k∟ (L mg⁻¹)	RL	R ²	k _F (mg g⁻¹)	1/n	R ²	
PF	303	277.0083	0.8587	0.01151	0.9910	220.4057	0.05009	0.6945
	313	323.6246	0.3916	0.02490	0.9992	234.0231	0.09692	0.9320
	323	342.4658	0.3425	0.02837	0.9969	251.9171	0.09543	0.8674
LF	303	200.4008	2.0202	0.004926	0.9994	139.0815	0.1073	0.9551
	313	210.0840	2.1636	0.004601	0.9993	144.0254	0.1175	0.9673
	323	238.0952	2.4432	0.004076	0.9987	152.4170	0.1247	0.9857
NF	303	221.2389	2.0452	0.004866	0.9947	168.2498	0.07309	0.8451
	313	226.7574	2.3967	0.004155	0.9958	173.3114	0.07382	0.8595
	323	233.1002	2.9384	0.003392	0.9955	179.1655	0.07538	0.8658

Table S2. The parameters of the isothermal adsorption model for the pseudo first order kinetics and pseudo second order kinetics of ZMMBC.

Table S3. The parameters of the isothermal adsorption model for the Temkin andDubinin–Radushkevich of ZMMBC.

Isotherm models	Temperature	Temkin			Dubinin–Radushkevich		
	(К)	$k_{ op}$	a	R ²	$q_{ m m}$	Ε	R ²
_		(L mg ⁻¹)			(mg g ⁻¹)	(kJ mol ⁻¹)	
PF	303	171035026.3476	11.7224	0.6692	261.7396	141.4392	0.7297
	313	13465.7554	24.9651	0.9631	301.8439	115.7432	0.8891
	323	17964.6105	26.0782	0.9065	319.2166	140.9645	0.9219
LF	303	3387.5049	17.2334	0.9717	182.4744	99.1754	0.7386
	313	1949.2076	19.2476	0.9825	187.8061	116.0988	0.7104
	323	1488.3258	21.2005	0.9904	194.0333	97.4229	0.7099
NF	303	355497.6355	13.2974	0.8580	208.8445	135.8518	0.8716
	313	407786.6092	13.5825	0.8787	213.7057	160.3240	0.8766
	323	365453.6163	14.2063	0.8925	218.4943	190.0433	0.8872