Supplementary Material

Experimental and computational study of a multi-active-site Schiff base as corrosion inhibitor of mild steel in 1 M HCl

Xiaolong Li^{A,B}, *Ting Long*^A, *Qian Wu*^A, *Chuan Lai*^{A,*}, *Yue Li*^{A,*}, *Junlan Li*^C, *Boyan Ren*^A, *Keqian Deng*^A, *Chaozheng Long*^A and *Shuting Zhao*^A

^ASchool of Chemistry and Chemical Engineering, Dazhou Key Laboratory of Advanced Technology for Fibre Materials, Sichuan Institute of Arts and Science, Dazhou, Sichuan, 635000, PR China

^BDazhou Market Supervision and Administration Bureau, Dazhou, Sichuan, 635000, PR China

^CSchool of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, PR China

*Correspondence to: Email: <u>591896541@qq.com</u>, <u>591896541@qq.com</u>

Schiff base	Туре	Mol. weight	C_{inh}	Т	$\eta_{ m W}$	Ref.
		$(g mol^{-1})$	(mmol L ⁻¹)	(K)	(%)	
4-(4-((pyridin-2-yl)methyleneamino)-phenoxy)-N-((pyridin-2-yl)methylene)-benzenamine [PMB]	double	378.37	5.0	298	88	[15]
4-(4-(4-((pyridin-2-yl)methyleneamino)-phenoxy)phenoxy)-N-((pyridin-2-yl)-methylene)benzenamine [PPMB]	double	470.45	5.0	298	92	[15]
N,N'-dibenzo[b,d]thiene-2,8-diylbis(1-(thiophen-2-yl)methanimine) [SB]	double	402.50	1.0	298	92.95	[24]
(1E,1'E)-N,N'-(1,4-phenylene)bis(1-(pyridin-2-yl)methanimine) [PBPE2]	double	286.27	2.8	303	91.88	[28]
(1E,1'E)-N,N'-(1,4-phenylene)bis(1-(pyridin-3-yl)methanimine) [PBPE3]	double	286.27	2.8	303	92.18	[28]
2-((4-(dimethylamino)benzylidene)-amino)benzenethiol [DBB]	single	256.32	2.0	298	78.6 (<i>η</i> eis)	[37]
3-[(3-Hydroxy-4-methoxy-benzylidene)-amino]benzoic acid [HMAMB]	single	271.23	1.0	303	87.53 (<i>η</i> _{EIS})	[38]
3-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]benzoic acid [HNCAMB]	single	291.13	1.0	303	89.13 (<i>η</i> eis)	[38]
N,N'-(1,4-phenylene)bis(1,1-di(pyridin-2-yl)methanimine) [PBDPM]	double	440.17	1.8	303	93.76	This wo

Table S1. Comparison of the corrosion inhibition efficiencies by weight loss test of some Schiff bases reported in 1.0 M HCl on mild steel.

	D 1		Devid		D 1		D 1
PBDPM	Bond	PBDPM	Bond	PBDPM	Bond	PBDPM	Bond
	angle (°)		length (Å)		angle (°)		length (Å)
C1C2C3	120.798	$C_1 - C_2$	1.406	N ₁₃ -C ₁₄ -C ₁₅	123.658	C14-C15	1.399
$C_2 - C_3 - C_4$	120.616	$C_2 - C_3$	1.393	$C_{14} - C_{15} - C_{16}$	118.043	$C_{15} - C_{16}$	1.394
$C_3 - C_4 - C_5$	118.458	$C_{3}-C_{4}$	1.407	$C_{15} - C_{16} - C_{17}$	118.685	$C_{16} - C_{17}$	1.395
$C_4 - C_5 - C_6$	120.800	$C_4 - C_5$	1.409	$C_{16} - C_{17} - C_8$	118.968	C ₁₇ –C ₉	1.405
$C_5 - C_6 - C_1$	120.671	$C_{5}-C_{6}$	1.389	$N_7 - C_8 - C_{44}$	117.149	$C_{8}-C_{44}$	1.509
$C_6 - C_1 - C_2$	118.511	$C_{6}-C_{1}$	1.408	C8-C44-C45	120.877	C44-C45	1.404
$C_2 - C_1 - N_7$	122.590	$C_1 - N_7$	1.399	C44-C45-N47	118.748	$C_{45} - C_{47}$	1.395
$C_1 - N_7 - C_8$	124.982	N7-C8	1.273	C45-C47-C49	118.707	C47-C49	1.395
$C_8 - C_9 - N_{13}$	117.936	C ₈ –C ₉	1.502	$C_{47} - C_{49} - C_{46}$	118.188	$C_{49} - C_{46}$	1.398
$C_9 - C_{16} - C_{17}$	117.266	C9-N13	1.340	C49-C46-N54	123.443	C46-N54	1.331
C ₁₇ -N ₁₃ -C ₁₄	118.521	N ₁₃ -C ₁₄	1.329	C46-N54-C44	118.498	N54-C44	1.338

Table S2. The bond length and bond angle parameters of PBDPM.

PBDPM	f_k^+	f_k^-	PBDPM	f_k^+	f_k^-
C_1	-0.054	-0.029	C ₁₈	-0.019	0.003
C_2	-0.010	-0.035	C19	-0.013	-0.004
C ₃	-0.009	-0.038	C ₂₀	-0.026	-0.015
C_4	-0.002	-0.006	C ₂₁	0.003	-0.003
C ₅	-0.002	-0.021	N ₂₂	-0.025	0.003
C ₆	-0.004	-0.048	C ₃₅	-0.028	-0.012
N_7	-0.078	-0.030	C ₃₆	0.002	0.032
C_8	-0.020	-0.036	C ₃₇	-0.005	-0.003
C9	0.041	0.010	C ₃₈	-0.011	-0.009
N_{10}	-0.071	-0.060	C_{40}	-0.019	-0.014
C ₁₁	-0.036	-0.039	C_{44}	-0.013	-0.079
C ₁₂	0.055	-0.052	C45	0.020	0.037
N ₁₃	-0.027	0.001	C46	-0.005	0.003
C ₁₄	0.004	-0.001	C_{47}	-0.006	-0.016
C ₁₅	-0.024	-0.011	C49	-0.019	-0.017
C ₁₆	-0.013	-0.005	N ₅₃	-0.005	-0.025
C ₁₇	-0.001	0.002	N ₅₄	-0.053	0.030

Table S3. Fukui index of PBDPM.

References

- [15] M Murmu, SK Saha, NC Murmu, P Banerjee, Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L⁻¹ HCl medium: an experimental, density functional theory and molecular dynamics simulation study. *Corros Sci* 2019, 146, 134-151.
- [24] N Karki, S Neupane, DK Gupta, AK Das, S Singh, GM Koju, Y Chaudhary, AP Yadav, Berberine isolated from *Mahonia nepalensis* as an eco-friendly and thermally stable corrosion inhibitor for mild steel in acid medium. *Arab J Chem* 2021, 14, 103423.
- [28] LX Li, B Xie, C Lai, JS Feng, XQ Liu, L Chen, YG Yang, RW Ji, JY He, W Li, ML Liu, Adsorption and corrosion inhibition performance of two planar rigid pyridinecarboxaldehydebased double Schiff bases for mild steel in HCl solution: experimental and computational investigations. J Mol Liq 2022, 355, 118926.
- [37] W Guo, M Talha, Y Lin, X Kong, Schiff's base with center of symmetry as an effective corrosion inhibitor for mild steel in acid medium: electrochemical & simulation studies. *Colloid Surf A – Physicochem Eng Asp* 2021, 615, 126234.
- [38] KT Loganathan, ST Venkatesan, S Nagarajan, R Natarajan, Corrosion inhibitive evaluation and DFT studies of 2-(Furan-2-yl)-4,5-diphenyl-1H-imidazole on mild steel at 1.0 M HCl. J Indian Chem Soc 2021, 98, 100121.