Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Carbon Dioxide Utilisation for the Synthesis of Unsymmetrical Dialkyl and Cyclic Carbonates Promoted by Basic Ionic Liquids

Peter Goodrich A , H. Q. Nimal Gunaratne A D , Lili Jin B D , Yuntao Lei B and Kenneth R. Seddon A C
+ Author Affiliations
- Author Affiliations

A The QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.

B Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China.

C Deceased.

D Corresponding authors. Email: n.gunaratne@qub.ac.uk; jinlili@cpu.edu.cn

Australian Journal of Chemistry 71(3) 181-185 https://doi.org/10.1071/CH17530
Submitted: 4 October 2017  Accepted: 15 January 2018   Published: 14 February 2018

Abstract

An efficient and greener synthesis of unsymmetrical organic carbonates mediated by Hünig’s base-appended basic ionic liquids, via carbon dioxide conversion, is described here. These ionic liquids were found to be effective bases for the fixation of carbon dioxide by various alcohols and benzyl bromide, at room temperature. When the alcohol and the halide functionalities are present within the same substrate, the reaction cleanly produces a cyclic carbonate. These functionalised basic ionic liquids were fully recyclable with no loss product yields.


References

[1]  M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114, 1709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFegsrfP&md5=9a21b274c9c4eba91b90d25d518bb998CAS |

[2]  A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFWqsLs%3D&md5=22d0856e0da5bfae410d321c92eec912CAS |

[3]  A. Tlili, E. Blondiaux, X. Frogneux, T. Cantat, Green Chem. 2015, 17, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsl2gtb%2FM&md5=f0504fa46581c14be1f590e861693d6dCAS |

[4]  B. H. Xu, J. Q. Wang, J. Sun, Y. Huang, J. P. Zhang, X. P. Zhang, S. J. Zhang, Green Chem. 2015, 17, 108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGktbvI&md5=fc7a7a725793a47a561b5dd526e57fcaCAS |

[5]  L. J. Murphy, K. N. Robertson, R. A. Kemp, H. M. Tuononend, J. A. C. Clyburne, Chem. Commun. 2015, 51, 3942.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehtbrN&md5=4871f21d6cd41fe5276052bfef471739CAS |

[6]  F. D. Bobbink, W. Gruszka, M. Hulla, S. Das, P. J. Dyson, Chem. Commun. 2016, 52, 10787.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht12ks7zE&md5=3a4ba5afaa98598f7dae1035cac0b999CAS |

[7]  G. L. Gregory, M. Ulmann, A. Buchard, RSC Adv. 2015, 5, 39404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFWjsbs%3D&md5=f4821e58f17b7f2410efd63749772c77CAS |

[8]  D. Zhao, X. Liu, Z. Shi, C. Zhu, Y. Zhao, P. Wang, W. Sun, Dalton Trans. 2016, 45, 14184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Okur3L&md5=400d076513545d3337889dbbc6809b63CAS |

[9]  M. North, R. Pasauale, C. Young, Green Chem. 2010, 12, 1514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWqsbvF&md5=3c0dc5027772391c11135b4b593be516CAS |

[10]  Y. Han, Z. Zhou, C. Tian, S. Du, Green Chem. 2016, 18, 4086.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmvFams74%3D&md5=5a6947404306c04d9571f77e469edf43CAS |

[11]  C. Martín, G. Fiorani, A. W. Kleij, ACS Catal. 2015, 5, 1353.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J. P. Parrish, R. N. Salvatore, K. W. Jung, Tetrahedron 2000, 56, 8207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1SisLs%3D&md5=0ffb1be32cde1153408aad172b80394bCAS |

[13]  A. F. Hegarty, in Comprehensive Organic Chemistry (Ed. I. O. Sutherland) 1979, Vol. 2, pp. 1067–1118 (Pergamon: London).

[14]  Y. Ono, Appl. Catal. A 1997, 155, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1Snsb4%3D&md5=e05afdd3f40b38f6d9a8e119ec35a7aaCAS |

[15]  B. Schäffner, F. Schäffner, S. P. Verevkin, A. Börner, Chem. Rev. 2010, 110, 4554.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Gryglewicz, F. A. Oko, G. Gryglewicz, Ind. Eng. Chem. Res. 2003, 42, 5007.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlSktb8%3D&md5=fa80a5346d26cc0b4d13ab503710eb76CAS |

[17]  Phosgene and Related Carbonyl Halides (Eds T. A. Ryan, C. Ryan, E. A. Seddon, K. R. Seddon) 1996, Topics in Inorganic and General Chemistry Vol. 24 (Elsevier: Amsterdam).

[18]  A. R. Choppin, J. W. Rogers, J. Am. Chem. Soc. 1948, 70, 2967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXisFeg&md5=f2943c09baddcfbc392f2c83cf7f2bccCAS |

[19]  S. Wilmouth, A.-C. Durand, S. Goretta, C. Ravel, D. Moraleda, M. Giorgi, H. Pellissier, M. Santelli, Eur. J. Org. Chem. 2005, 4806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KgurrJ&md5=fd812a457120dbb561ce64b59a915910CAS |

[20]  (a) K. Tezuka, K. Komatsu, O. Haba, Polym. J. 2013, 45, 1183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOiu7bO&md5=a88e950ebb2beab617579c646ac7a4c7CAS |
      (b) D. J. Darensbourg, W.-C. Chung, A. D. Yeung, M. Luna, Macromolecules 2015, 48, 1679.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  D. M. Fenton, P. J. Steinwand, J. Org. Chem. 1974, 39, 701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXpsFWqtg%3D%3D&md5=06c8cbfba495f4a029cf7a0e4a10eb7dCAS |

[22]  S. Y. Huang, B. Yan, S. P. Wang, X. B. Ma, Chem. Soc. Rev. 2015, 44, 3079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVOjsL4%3D&md5=1c542996f551d02e89a44f35b3e240e9CAS |

[23]  P. Tundo, M. Selva, Acc. Chem. Res. 2002, 35, 706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1aisbw%3D&md5=421ecc9c8c5ee8eb1f6d6244752c83a6CAS |

[24]  A. A. Chaugule, A. H. Tamboli, H. Kim, RSC Adv. 2016, 6, 42279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmvVOhsLk%3D&md5=4d96d9d0cf7ea316741457e9ad80dff5CAS |

[25]  H. Mutlu, J. Ruiz, S. C. Solleder, M. A. R. Meier, Green Chem. 2012, 14, 1728.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Sku7k%3D&md5=44913a2e349a22ebd299f04dae32bc88CAS |

[26]  S. Carloni, D. E. De Vos, P. A. Jacobs, R. Maggi, G. Sartori, R. Sartorio, J. Catal. 2002, 205, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1aqur0%3D&md5=276b3a610c2458a9eca25c17cd067562CAS |

[27]  L. Wu, S. Tian, Eur. J. Inorg. Chem. 2014, 2080.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktV2rtL8%3D&md5=b1252f97e999105e086af119a8be71b6CAS |

[28]  B. Veldurthy, F. Figueras, Chem. Commun. 2004, 734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFOjtrY%3D&md5=e4c7d8b3764fa2970404e84c4f404dcaCAS |

[29]  B. Veldurthy, J. M. Clacens, F. Figueras, Eur. J. Org. Chem. 2005, 1972.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVyqsbs%3D&md5=11173ea07e11eb5c58e1190ff26e18bbCAS |

[30]  M. L. Kantam, U. Pal, B. Sreedhar, B. M. Choudary, Adv. Synth. Catal. 2007, 349, 1671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1Cqu7g%3D&md5=2a9ebd72e1f2f19f2d1ddd17646b6db9CAS |

[31]  J. L. Song, B. B. Zhang, T. B. Wu, G. Y. Yang, B. X. Han, Green Chem. 2011, 13, 922.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1KhsL4%3D&md5=4bb4e3c3d660aa56a4effcd05c8c88aeCAS |

[32]  S. Kumar, S. L. Jain, New J. Chem. 2013, 37, 3057.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCqsbvI&md5=191f3a57de55bcd9bc15d860d7e90598CAS |

[33]  L. Zhang, D. Niu, K. Zhang, Y. Luo, J. Lu, Green Chem. 2008, 10, 202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSis7o%3D&md5=bf50019d1b1543e229344b7b20c8ebeaCAS |

[34]  S. Kim, F. Chu, E. E. Dueno, K. W. Jung, J. Org. Chem. 1999, 64, 4578.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFCqtLk%3D&md5=9d0b221cae29f65ffaba58e3a3bc83d9CAS |

[35]  R. S. H. Khoo, A. M. X. Lee, P. Braunstein, T. S. A. Hor, H. Luo, Chem. Commun. 2015, 51, 11225.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  (a) M. R. Reithofer, Y. N. Sum, Y. Zhang, Green Chem. 2013, 15, 2086.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCltbjI&md5=021c57152e1b1f464630638d30164067CAS |
      (b) M. Shi, Y. Shen, Molecules 2002, 7, 386.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. N. Salvatore, F. Chu, A. S. Nagle, E. A. Kapxhiu, R. M. Cross, K. W. Jung, Tetrahedron 2002, 58, 3329.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) F. Chu, E. E. Dueno, K. W. Jung, Tetrahedron Lett. 1999, 40, 1847.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis 2008 (Wiley-VCH Verlag GmbH & Co.: Weinheim).

[38]  K. H. Chen, G. L. Shi, R. N. Dao, K. Mei, X. Y. Zhou, H. R. Li, C. M. Wang, Chem. Commun. 2016, 52, 7830.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XotF2msb8%3D&md5=f37a64af55590f908c80c216cfc56b89CAS |

[39]  Y. F. Zhao, Z. Z. Yang, B. Yu, H. Y. Zhang, H. J. Xu, L. D. Hao, B. X. Han, Z. M. Liu, Chem. Sci. 2015, 6, 2297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXos1Wnsw%3D%3D&md5=a8af39fdc2976fc5a02e923a40367a8eCAS |

[40]  Y. F. Zhao, Y. Y. Wu, G. F. Yun, L. D. Hao, X. Gao, Z. Z. Yang, B. Yu, H. Y. Zhang, Z. M. Liu, Chem. Asian J. 2016, 11, 2735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVahurrF&md5=120f04494d3f721c534634201768b982CAS |

[41]  S. A. Forsyth, U. Fröhlich, P. Goodrich, H. Q. N. Gunaratne, C. Hardacre, A. McKeown, K. R. Seddon, New J. Chem. 2010, 34, 723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWrtL4%3D&md5=7bc07dd883a4d2cf4a6c183f69767c0bCAS |

[42]  C. Paun, J. Barklie, P. Goodrich, H. Q. N. Gunaratne, A. McKeown, V. I. Parvulescu, C. Hardacre, J. Mol. Catal. Chem. 2007, 269, 64.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVemt7s%3D&md5=6bf3e96688df8f90e22561eec46fd3dcCAS |

[43]  S. Hünig, M. Kiessel, Chem. Ber. 1958, 91, 380.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  W. D. McGhee, D. P. Riley, M. E. Christ, K. M. Christ, Organometallics 1993, 12, 1429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFantL4%3D&md5=8277aba9433bb79364581590e1c25840CAS |

[45]  G. R. Reddy, A. S. Avadhani, S. Rajaram, J. Org. Chem. 2016, 81, 4134.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xntl2hsro%3D&md5=abc6079091749ed60c34f5e0dec7338eCAS |

[46]  N. F. Sauty, L. C. Silva, C. Gallagher, R. Graf, K. B. Wagener, Polym. Chem. 2015, 6, 6073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFelsrfI&md5=e0b28ca70fa96e5f33c3cf36bc563850CAS |