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It is clear that the sizes of chemical, ‘drug-like’, and materials spaces are enormous. If scientists working in established
therapeutic, and newly established regenerative medicine fields are to discover better molecules or materials, they must
find better ways of probing these enormous spaces. There are essentially fiveways that this can be achieved: combinatorial

and high throughput synthesis and screening approaches; fragment-based methods; de novo molecular design, design of
experiments, diversity libraries; supramolecular approaches; evolutionary approaches. These methods either synthesise
materials and screen them more quickly, or constrain chemical spaces using biology or other types of ‘fitness functions’.
High throughput experimental approaches cannot explore more than a minute part of chemical space. We are nevertheless

entering into an era that is data dominated. High throughput experiments, robotics, automated crystallographic beam lines,
combinatorial and flow synthesis, high content screening, and the ‘omics’ technologies are providing a flood of data, and
efficientmethods for extractingmeaning from it are essential. This paper describes hownew developments inmathematics

have provided excellent, robust computationalmodelling tools for exploring large chemical spaces, for extractingmeaning
from large datasets, for designing new bioactive agents andmaterials, and formaking truly predictive, quantitative models
of the properties of molecules and materials for use in therapeutic and regenerative medicine. We describe these broadly

applicable modelling tools and provide examples of their application to serum free stem cell culture, pathogen resistant
polymers for implantable devices, new markers and biological mechanisms derived from mathematical analyses of gene
array data, and pharmacokinetically important physicochemical properties of small molecules. We also discuss

biologically conserved peptide motifs as a design framework for small molecule drugs and give examples of the
application of this concept to drug design.
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Introduction

This paper recognises the great legacy of Prof. Adrien Albert,†

an internationally renowned Australian medicinal chemist[1–4]

in whose honour this award is named.
Medicinal chemistry has changed unrecognisably since

Albert’s day. The amount of knowledge on the molecular basis

for drug action has grown tremendously, and new robotic
technology now allows us to synthesise and test millions of

potential drugs in a similar time to that required to create a
handful of compounds in Albert’s day. In spite of this enormous
advantage, many diseases are still lacking drug therapies that

are effective, and some diseases have no drug treatments at all.

†Prof. AdrienAlbert (1907–1989)waswidely considered the ‘father of selective toxicity’ inAustralia. He championed the idea that chemical compounds could

be developed that were toxic to a pathogen or disease state but weremuch less so to normal tissues. He received his BSc (H1) and theUniversityMedal from the

University of Sydney in 1932. He completed his PhD in 1937 and a DSc in 1947 at the University of London. He was a Lecturer at the University of Sydney

(1938–1947), during which time he advised the Medical Directorate, Australian Army (1942–1947). After the war, he worked at the Wellcome Research

Institute in London (1947–1948), then returned to Australia as the Foundation Chair of Medical Chemistry, John Curtin School of Medical Research at the

AustralianNationalUniversity in 1948.Apart from establishing theDepartment ofMedical Chemistry, hewas also elected a Fellowof theAustralianAcademy

of Science, and authored a seminal textbook Selective Toxicity: The Physico-Chemical Basis of Therapy, published by Chapman and Hall in 1951 and

extensively reprinted. In 1981 he won the Bristol-Myers Squibb Smissman Award and became Patron of the Royal Australian Chemical Institute (RACI)

Division ofMedicinal Chemistry.He also received theOfficer of theOrder ofAustralia honour for contributions tomedical research.After his death, theAdrien

Albert Laboratory of Medicinal Chemistry was established at the University of Sydney in 1989. The Royal Society of Chemistry created the Adrien Albert

Lectureship in his honour and the StonyBrookUniversity established theAlbert lectures. Adrienwas awarded a posthumous honoraryDSc by theUniversity of

Sydney. The Adrien Albert Award was presented for outstanding research in medicinal chemistry by theMedicinal Chemistry and Chemical Biology Division

of RACI at the RACI National Congress in Adelaide in 2014.
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There is simultaneously pressure on drug pipelines, as the cost of
inventing new drugs is increasing rapidly ($2.3 billion at last
estimate), patent life is limited, and regulatory barriers are

constantly increasing. New drugs must be demonstrably better
than existing drugs if they are to receive patent protection.
Balancing this, the new research fields of nanotechnology,
materials science, and regenerativemedicine are creating oppor-

tunities for medicinal chemists to leverage their skills in novel
ways to develop radically different treatments.

Computational modelling and simulation methods are key

elements in the effective use of this reservoir of molecular
knowledge and dramatic increase in data brought about by
automation and new information technology. Detailed under-

standing of how drugs interact with proteins, cells, organs,
and organisms is greatly facilitated by structural biology and
molecular modelling methods. These modelling techniques
allow researchers to visualise interactions between molecular

species and infer and predict their effects on the organism.
Likewise, statistical and machine learning methods probe
relationships between molecular structure and biological

activity for large collections of molecules and can deal with
the flood of data generated by modern experimental techni-
ques. These methods provide quantitative predictions of

biological activity or other properties for molecules yet to
be synthesised or tested. These techniques promise accelera-
tion of the discovery and development of new drugs and

medical therapies.
Like most new technologies, computational modelling

passed through the ‘hype cycle’ (Fig. 1) where its initially
modest capabilities were oversold and some degree of disillu-

sionment resulted.
In the past thirty years computational techniques have

become much more accurate, robust, and productive through

an increased maturity in understanding of how they are best
applied, and by the dramatic increases in computational
power described byMoore’s Law over the past several decades.

The rate of change in this facilitating technology has been
staggering – the fastest and most expensive supercomputer in
1990 had the same capabilities as some inexpensive tablet
computers in 2015. It has been estimated that by 2020 we will

be able to compute 100 million times faster than in 1980.
This paper illustrates some successful applications of

computational methods that will be increasingly needed to meet

the challenges of financial pressures, an ageing population,

increasing lifestyle disease burden, effects of climate change,
and the challenges of emerging and important disease threats
such as HIV, tuberculosis, and Ebola.

The Threat and Promise of the Vastness
of Chemical Space

The automation of medicinal chemistry that occurred in the
1980–1990s, now being leveraged intomaterials research,[5] has

generated wider recognition in the research community of the
vastness of chemical space. It is difficult to calculate exactly
how many molecules could be synthesised that are stable and

obey the rules of chemical reaction and valency, but 1060 for
drug-like space and 1080 for chemical space is often nomi-
nated.[6] Clearly, no matter how fast and efficient we make

automated synthesis and testing we cannot hope to explore
spaces this large. Techniques like experimental design, and
diversity library methods will allow large spaces to be explored

in a very sparse way. Virtual screening and computational
design methods that constrain the chemical space by use of
protein structural information likewise can identify islands of
value in the universe of chemical space possibilities. However,

computational modelling and simulation methods provide the
only means for exploring significant parts of unconstrained

drug-like space to find new therapies.

Although these regions of chemical space that contain
valuable new chemotypes are difficult to find, there may be
many of them, providing an almost infinite scopez for the

discovery of new or more effective drug therapies.
Our team has developed effective computational design and

modelling techniques over the past 20 years,[7–15] and we have
employed them to generate substantial scientific and commer-

cial impact, culminating inmore than 20 patents. Thesemethods
have been used to design and optimise green pesticides[16–20] in
collaboration with Du Pont and Schering Plough, have discov-

ered new peptides and small molecules to control stem cells and
cancers,[21–27] are accelerating the development of biomaterials
for implantation and stem cell culture,[28–33] have provided new

scientific insight into the potential adverse properties of nano-
materials,[34–38] have yielded clinical candidates for Australian
SMEs and international companies, andwere instrumental in the

discovery of antibiotics[39,40] with a novel mode of action for the
biotechnology spin off company, Betabiotics. Some of this
research is discussed in more detail in the following sections.

Quantitative Structure–Activity Modelling

Increasingly, automated methods are generating large volumes
of data on biological or other properties of chemical or materials
libraries. These datasets contain very useful information on how

the molecular properties modulate the observed, macroscopic
properties. Efficient and robust methods for deciphering these
relationships are essential if maximum value is to be obtained

from such high throughput experiments. One of the most useful
ways to achieve this involves statistical and machine-learning
methods called quantitative structure–activity relationships

modelling (QSAR). This computational tool was developed by
Hansch and Fujita[41,42] in the early 1960s to model physico-
chemical and biological properties of drugs, and has been a
mainstay of pharmaceutical discovery since.[43]

VISIBILITY

Peak of inflated expectations

Plateau of productivity

Slope of enlightenment

Trough of disillusionment

Technology trigger TIME

Fig. 1. The technology ‘hype cycle’ (Wiki Commons).

z‘Only two things are infinite, the universe and human stupidity, and I’m not sure about the former.’ — Albert Einstein
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In essence themethod is deceptively simple. It is a supervised

modelling method (i.e. context dependent) that describes the
complex relationships between themolecular (microscopic) and
physicochemical properties of molecules and their biological

(macroscopic) effects:

Biological response ðBRÞ ¼ F ðmolecular propertiesÞ

The method involves finding relevant mathematical forms
for the microscopic properties of compounds (descriptors) and

the optimum (usually nonlinear) complex function:

F ¼ gbinding � hefficacy � jmetabolism � kpharmacokinetics � ::::

This function summarises the effects of a range of biological
processes occurring between the administration of the drug and
its ultimate interaction with the molecular target and the

downstream signalling process that this event triggers. QSAR
is essentially a kind of complex pattern recognition process.
It can accommodate complex ‘models within models’, which is

very useful when modelling in vivo properties such as toxicity,
carcinogenicity, and mutagenicity. We have developed a suite
of robust and predictive QSAR modelling methods over the

past 20 years that have been used on a wide range of research
problems.

Sparse Learning Methods

It is known that models that are optimally sparse have the
greatest ability to predict the properties of new data. The cor-

ollary is that models that have too many fitted variables relative
to the number of data points (e.g. molecules) will overfit the data
and such models will have very little predictive value. We
optimised model performance by employing a special type of

regularization, a family of methods that control the complexity
of models. This utilises Bayesian statistics to generate models
that are close to optimal sparsity, and that predict new data as

accurately as the errors in the training data allow. We have
applied Bayesian regularization to artificial neural networks,
learning algorithms that are ‘universal’ approximators capable

of fitting any linear or nonlinear function given sufficient
training data. Bayesian regularization overcomes the known
shortcomings of traditional neural networks and allows them to
generate very good predictive models of biological and physical

properties, even when the underlying relationships are complex,
multidimensional, and nonlinear. The mathematics of Bayesian
regularization is challenging and is not repeated here as it is

described in numerous publications.[7–9,11–15,44–47]

Bayesian Regularized Neural Networks

We applied these regularization techniques to neural networks
in two ways, differing only in the type of Bayesian prior
(a probability distribution expressing the uncertainty in a

property before evidence is taken into account) that is employed.
When a Gaussian prior, pðwjaÞ ¼ QNV

i¼1
a
2
expð�aw2

i Þ , is
used the neural network automatically prunes the weights

(the fitted parameters) in the network to an optimum number.
Employing a sparsity-inducing Laplacian prior, pðwjaÞ ¼QNV

i¼1
a
2
expð�ajwijÞ, allows less relevant weights and molecular

descriptors to be removed from the model, further improving its
predictive power and making interpretation of the relationships
between molecular and biological properties simpler.[5,11,14]

Feature Selection Using Expectation Maximisation

Combining sparse priors and an expectation maximisation

algorithm – an interactive method for finding maximum likeli-
hood estimates of parameters in models – allows the imposition
of sparsity control in models by the removal of less relevant

attributes of molecules.[15] This can result in extreme sparsity
relative to the initial dimensionality of the problem. For exam-
ple, it is possible to numerically generate thousands of mathe-
matical descriptions of molecular properties. These can often be

reduced by 90–99% using these sparse feature selection meth-
ods, initially described by Figeuiredo (Fig. 2).[45] Examples of
the ability of these techniques to model extremely diverse

chemical datasets, and to discover unexpected mechanisms
from large gene expression microarray datasets are summarised
below.

Global Prediction of Drug Properties

Sparse modelling methods have successfully generated robust

models for predicting physical and biological properties of
drugs and other materials that have very large domains of
applicability. The domain of applicability is the region

of chemical and property space for which the model predictions
are valid. For example, farnesyl transferase inhibition and
selectivity against geranyl-geranyl transferase of ,2000 mole-

cules were modelled using these sparse, nonlinear methods.[49]

The methods were subsequently applied to the modelling and
prediction of the ability of stem cell bioreactors to generate

expanded populations of cells using data collated from 300
experiments from multiple research groups. These models
identified the most important parameters for driving cell
expansion down particular lineage pathways.[25] More recently,

the Bayesian regularized neural networks and sparse feature
selection methods generated global models of aqueous solu-
bility of small organic molecules, based on a very chemically

diverse training set of,5000 drugs displaying over 13 orders of
magnitude differences in solubility. This property is one of the
most important for predicting the likely pharmacokinetic per-

formance of candidate drugs. The model predicted aqueous
solubility within a factor of 3 (logS � 0.6).[50] Flash point is
another very important physical property for materials used in

engineering applications. Bayesian regularized neural networks
were used to successfully generate a model for this property
using a training set of ,10000 molecules spanning 1000K in
flash point and a large range of chemical diversity.[51] The

model could predict the flash point of compounds in a test
set, data not used to construct the model, within a standard error
of �17K.

Discovery of Novel Biomarkers and Mechanisms
of Action by Sparse Feature Selection

The very sparse feature selection methods described above have
also been applied to gene expressionmicroarray data. Two long-
standing research problems were resolved: an explanation for

the mechanism by which strontium ion induces mesenchymal
stem cells (MSCs) to differentiate towards bone; and the dis-
covery of biomarkers that identify symmetric versus asym-

metric division of stem cells.
Strontium ranelate (ProtelosTM) 1 (Chart 1) is a drug

approved in the EU for the treatment and prevention of osteo-

porosis – strontium ion is the active component. It reduces risk
of vertebral and non-vertebral fractures in post-menopausal
women and can be useful in replacing bone lost due to drug

1176 D. Winkler



treatment for cancer. Strontium ion’smechanism of action is not
fully understood, but it is thought to upregulate differentiation of
osteoprogenitors or to directly stimulate bone formation.[52,53]

Autefage et al. designed experiments that exposed MSCs to

various levels of strontium ion and measured changes in gene
expression over time.We analysed themicroarray data using the
sparse Bayesian feature selection methods to identify genes of

highest relevance to the strontium-induced bone formation. The
genes identified by feature selection unexpectedly identified a
previous unrecognised fatty acid and steroid pathway, subse-

quently validated by real-time polymerase chain reaction and
other biochemical experiments.[33]

There is a long-standing unmet clinical need for biomarkers

that can identify whether distributed stem cells (DSCs) in tissues
divide symmetrically or asymmetrically. DSCs are essential for
tissue maintenance and repair but they are difficult to identify
and count. We combined a sparse feature selection method with

combinatorial molecular expression data to identify such DSC
biomarkers. Our analysis identified reduced expression of the
histone H2A variant H2A.Z as a biomarker of DSC asymmetric

self-renewal (Fig. 3).[54] The biomarkers arising from this

research provided the intellectual property for the establishment

of the company, Asymmetrex.

Self-Assembling Amphiphilic Drug Delivery Systems

Amphiphilic lyotropic liquid crystalline materials spontane-

ously self-assemble into a variety of nano-containers with
important applications in drug delivery and diagnostic imaging.
There is a paucity of knowledge on the effect of the incorporated
drug on the resulting nanostructures and predicting these effects

is widely considered intractable. We used sparse modelling
methods to predict the effects of concentration and molecular
properties of 10 commondrugs, and temperature on the resulting

nanostructures using data obtained from high throughput data
synthesis and small-angle X-ray scattering (SAXS) characteri-
sation experiments.[56] The models predicted the type and

coexistence of multiple nanophases (Fig. 4), important because
only some of these are suitable for drug delivery. The model
further predicted the nanophases resulting from incorporation of

eleven new drugs in a blind test of the prediction ability of the
model. Subsequent synchrotron experiments showed that
the nanophases resulting from incorporation of these drugs
were predicted with accuracies of 85–91%, depending on the

amphiphile used to encapsulate them.[30]

Subsequent work extended these nanophase prediction mod-
els to include the effects of time, and the presence of components

of crystallisation screens used to stabilise membrane-bound
proteins for X-ray structural biology studies. We predicted the
existence of individual nanophases with accuracies of 98–99%

and the complex coexistence of multiple phases to a similar
accuracy using nonlinear models.[57] From the models we could
identify which crystallisation screen components were most
relevant to the temporal evolution of individual mesophases.
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Fig. 2. A cartoon showing how the sparse feature selection method progressively eliminates less relevant features

(e.g. molecular descriptors or genes) from a model, leaving only a sparse set of the most relevant features.

Picture modified from diagram from Dr Hari Kiiveri, CSIRO.[48]
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We also studied the effect of amphiphile structure on the
formation of mesophase formation. Again using high through-
put synthesis and assessment data we could make quantitative
predictions of the effects of amphiphile structure and crystallo-

graphic screen components on the formation of mesophases.[58]

Cellular Attachment to Polymer Library Surfaces

Bacterial adhesion and growth on biomaterial surfaces such as
joint prostheses, heart valves, shunts, vascular and urinary

catheters, intraocular lenses, and similar implants is a serious
problem in health care. The discovery of polymers that resist the
attachment of the most important pathogens would greatly
ameliorate these problems. Hook et al. developed methods for

synthesising large polymer libraries on slides and exposing them
to cells to determine the degree of cell attachment.[59] A 576-
member polymer microarray was incubated with suspensions of

three pathogenic bacteria (Pseudomonas aeruginosa (PA),

Staphylococcus aureus (SA), and uropathogenic Escherichia

coli (UPEC)) and the attached bacteria were counted.[59] We
used these data to construct linear and nonlinear models for
cellular adhesion as a function of polymer surface chemistry for

each pathogen type.[60] As Fig. 5 shows, we couldmake accurate
quantitative predictions of the degree of bacterial adhesion for
the three common pathogens, and could determine which

aspects of the surface chemistry favoured low attachment. ForP.
aeruginosa and S. aureus it was found that cyclic hydrocarbon
groups, tertiary butyl groups, and aliphatic groups on the meth/

acrylate polymer were required for low bacterial attachment.
Culture of pluripotent cells such as induced pluripotent stem

cells is a major research focus in regenerative medicine. Present
methods to culture them and expand their populations rely on

animal-derived products now increasingly under scrutiny. There
is an urgent need for chemically defined, serum-free, feeder-free
synthetic substrates and media to support robust self-renewal of

pluripotent cells. Changes in cellular properties such as
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Fig. 4. Complex phase diagram resulting from the incorporation of drugs into amphiphilic nanostructured drug delivery

vehicles. Drug concentration (mol-%) increases from the left. Colours represent phases: blue¼Pn3m; yellow¼HII; red¼ Ia3d;

green¼Lc.

SP CD

Symmetric Asymmetric
SP CD

DAPI

H2A.Z

Fig. 3. Staining of the nucleus of dividing DSC by 40,6-diamidino-2-phenylindole (top) and the H2A.Z (bottom) marker

showing the ability of the symmetry marker to only stain one nucleus when cells divide asymmetrically. The SP panels denote

sister pairs of cells after division. TheCDpanelswere treatedwithCytochalasinD that allows the nuclei to divide but not the cell.

Modified with permission from Huh and Sherley.[55]

1178 D. Winkler



adhesion, morphology, motility, gene expression, and differen-

tiation are influenced by chemistry, wettability, topography, and
elastic modulus of the surface on which they are cultured. Using
a 496-member polymer library, Yang et al. determined the

degree of attachment of human embryonic stem cell embryoid
bodies.[61] Wemodelled the relationship between surface chem-
istry and the degree of embryoid body attachment. Nonlinear

models accounted for 80% of the variance in the data, made
quantitative predictions of the degree of attachment of embryoid
bodies to new polymers, and elucidated the relationship between
surface chemistry and cell attachment.[29]

Design of New Drugs Using Tripeptide Motifs

Nature tends to reuse motifs and structural components such as
helices, sheets, and barrels in proteins. The concept that specific
recognition events occur between amino acids in endogenous

ligands and their native receptors forms a fundamental tenet of
structural biology and drug design. While many of these rec-
ognition events are complex, given the economy of Nature it is

interesting to speculate on what is the minimal information-
bearing structure in proteins and peptides.

We reviewed the literature and established that this minimal
information unit may be a tripeptide motif.[39] Some tripeptides

have been mimicked by small molecules, while many more
potentially important motifs have yet to be discovered and used
for drug design. The idea that three contiguous amino acids is

biologically important is consistent with Reynolds et al. and

Neduva and Russell’s suggestion that 25 heavy atoms
(the average number in a tripeptide) provides optimal ligand
affinity.[62,63] Hann et al. also showed that in drug-like libraries

and the World Drug Index, the heavy atom profile peaks at
25 heavy atoms.[64] Asmany drugsmimic biological signals, the
over-representation of drugs this size is consistent with peptide

motifs around three amino acids in length having biological
relevance. Table 1 summarises some of the most relevant and
biologically important motifs.

An example of the application of the tripeptide motif concept

to drug discovery is HAV, an N-cadherin antagonist. Cadherins
are calcium-dependent glycoproteins that play a central biolog-
ical role, particularly in cell adhesion, morphogenesis, neuro-

genesis, and many other important functions. A key recognition
sequence, HAV (His-Ala-Val), in cadherin was first identified
by Byers et al.[65] Burden-Gully et al. have very recently

reported small molecule mimics (Fig. 6) that show moderate
cadherin antagonist activities.[66]

We applied this tripeptide motif concept to the design of

potent agonists and antagonists of a key cytokine receptor, and
antimicrobial agents operating via a novel mode of action.

Thrombopoietin (TPO) is an important cytokine that directs
the differentiation of stem cells towards platelet production. Its

receptor C-Mpl, is also implicated in a range of myeloprolifera-
tive diseases such as leukaemias. Cwirla et al.[67] conducted
phage display experiments to identify families of peptides that

Table 1. Examples of tripeptide signalling motifs

Endogenous tripeptides Tripeptide motifs in proteins

ECG (glutathione) antioxidant cofactor DLF/SLF b protein of bacterial replisome antimicrobial

EHP stimulates pituitary gland controlling thyroid-stimulating

hormone secretion

ELR chemokine growth factor binding motif

FEG inhibition of anaphylaxis, anti-inflammatory, modulates

cardiac leukocyte adhesion

GGQ release factor, stop codon recognition

GHK tissue remodelling and wound healing GPE neuroprotection

PLG modulator of the dopamine D2 receptor HAV cadherin motif, cell–cell interactions, and adhesion

HGK vitronectin inhibition

HPQ streptavidin binding motif

KPV anti-inflammatory properties

LDV vascular cell adhesion molecule1 (VCAM-1)/fibronectin

adhesion motif

RGD Cell adhesion signal and modulation of thrombosis

SKL peroxisomal targeting
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Fig. 5. The predicted log fluorescence (proportional to numbers of bacteria) for the training set used to develop the model (black circles) and a test set (red

triangles) for each of the three pathogenic bacteria.
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bound to the C-Mpl receptor. We identified a key binding motif,
RQW, in these peptide libraries and used this to develop potent
small molecule and peptide agonists and antagonists of the TPO
receptor.[22,23] The agonists were capable of potently stimulat-

ing platelet counts in animals, and also increased megakaryo-
cyte ploidy. Peptide TPO mimetics could replace native TPO in
the expansion of CD34þCD38� primary cells up to 8 days.

These mimetics also promoted megakaryocyte development
(CD41aþ) up to 8 days primary cell culture. The design of
agonists also allowed us to develop the first C-Mpl antagonists

that are being developed as anticancer treatments.
The problem of bacterial resistance to drugs has become

severe and new antibiotics that function via novel mechan-

isms, preferably those that are very difficult to acquire resis-
tance to, is essential. Using a deep sequence similarity search,
Dalrymple et al. identified a conserved tripeptide motif in the
bacterial replisome, a viable target for the development of new

antibiotics.[68] The SLF and DLF peptide motifs were highly
conserved in the binding site of the b2 sliding clamp, an
essential component of bacterial replicative machinery. These

clamps are homodimeric ring-shaped molecules that encircle
DNA and facilitate the operation of the polymerase. They
interact with many proteins involved in bacterial DNA repli-

cation and repair, and drugs that interfere with this binding site
will disrupt DNA synthesis. We developed a three-dimension-
al pharmacophore for this peptide motif based on a novel

analysis of the structures in the protein crystallographic data-
base. The 3D structures of the peptide motifs, DLF and SLF,
were surprisingly well conserved in Nature, and provided a
search query that allowed large chemical libraries to be

searched for small molecules mimicking that 3D motif. This
led to the identification of compounds that, on further devel-
opment, inhibited b2 interactions at low micromolar concen-

trations and showed broad-spectrum antibiotic activity.
Subsequent crystal structure determinations of the complex
containing one of these inhibitors (Fig. 7) validated the

concept of conservation of the 3D conformation of this
tripeptide motif.[40] The candidate drugs arising from this
research provided the intellectual property for the establish-
ment of the company, Betabiotics.

Where to next?

Given the rapid increase in computing power, the increased rate

of automation of drug discovery and materials science, and a
greater appreciation of the size of chemistry space, the prospects
for computational molecular design are very bright. Areas of
future research focus and application are likely to include:

� Rational design of novel drug delivery vehicles based on self-

assembly principles.
� Design of evolutionary algorithms that allow molecular leads

to be evolved towards desired properties, searching very large
chemistry spaces more efficiently.[69]

� Significantly more reliable methods for docking molecules
into proteins and for scoring these interactions.

� Improved pharmacokinetic, toxicity, and metabolism predic-

tion methods, potentially using machine-learning models
based on large datasets.[70–72]

� The leveraging of computational tools from drug discovery to
new areas of science – biomaterials, regenerative medicine,

and tissue engineering.[5]

� Increasingly robust and autonomousmachine learningmethods
for modelling very large datasets and the application of these

models to drug and materials discovery and optimisation.
� Consensus tools that can integrate information from disparate

sources for molecular design.

� Understanding and modelling drug, target, and disease net-
works, exploiting multi-target drugs, and the use of the con-
cepts of complex systems science to understand diseases.[73,74]

� Design of small molecules to reprogram somatic and stem
cells, and to selectively kill cancer stem cells.[21]

Clearly science and technology have moved on very rapidly
since Adrien Albert’s day, but he would be very pleased to see
his area of selective toxicity flourishing in the twenty-first
century.
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