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Cnidarians (e.g. jellyfish, coral, and sea anemones) are one of the
oldest known venomous lineages, and have a unique envenom-

ation system to deliver venoms. Their toxins are encapsulated in
microscopic organelles (cnidae) that are embedded throughout
the ectodermal tissue of the animal. Each type of cnidae performs
a specific biological function, ranging from adherence to delivery

of toxin for prey capture. Discrete morphological regions of sea
anemones contain specific complements of cnidae to deliver
toxins for distinct biological functions, e.g. cnidae in tentacles are

used for prey capture.[1]

There is a dearth of knowledge regarding the diversity of
sea anemone toxins and their distribution in relation to

specific morphological regions of the animals. Peptide toxins
(Mr,10 kDa) contained in venoms are of particular interest as a
source of drug leads because of their typically high potency and

target selectivity.[2] One such peptide, ShK, from the sea
anemone Stichodactyla helianthus, forms the basis of the first-

in-class drug Dalazatide, currently in clinical trials to treat
psoriasis.[3] To date, Australian sea anemones have been largely
overlooked in the search for novel peptide toxins, and excluded
from toxin evolution studies within a global context.

To mine toxins from venomous animals for the purpose of
drug discovery, a venomics strategy (proteomics and transcrip-
tomics) is employed. This strategy has been applied successfully

to venomous animals with a centralised venom delivery system
(venom sac or gland), such as cone snails, spiders, scorpions,
and centipedes.[4–7] It has been used less frequently with

cnidarians, which lack a centralised delivery system.[8] For
cnidarians, traditional toxin isolation techniques for proteomic
analysis, such as electric stimulation, fail to capture a
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Fig. 1. MALDI-IMS spectra for regions of interest in the sea anemone Oulactis muscosa (m/z spectra range ,7 kDa). Each tissue has a different

complement of cnidae and displays a unique peptide profile, illustrating the peptide diversity in each morphological region. Legend: (a) tentacle;

(b) column; (c) actinopharynx; (d) acrorhagi and frill; and (e) mesenterial filaments.
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Fig. 2. MALDI-IMS colour maps of Oulactis musocsa, showing the distribution of three peptides in different colours for clarity. The

colour intensity corresponds to the normalised signal intensity. (a) Transverse section of Oulactis muscosa; (b) peptide (m/z 2232), a

potential toxin, is restricted to tentacle ectoderm; (c) peptide (m/z 4447) intensity is restricted to muscular tissue; (d) peptide (m/z 4751)

found ubiquitously throughout tissue.
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comprehensive venom inventory owing to the external and

internal distribution of cnidae. Moreover, the use of transcrip-
tomics alone will only identify putative toxins with homology to
known peptides,[9] thereby overlooking novel scaffolds of

potential interest as drug leads.
We have examined the utility of incorporating matrix-

assisted laser desorption/ionisation imaging mass spectrometry
(MALDI-IMS) into a venomics strategy to discern the tissue

distribution of peptides and infer biological functions. MALDI-
IMS is commonly used in clinical applications to identify
protein changes within cancers, detect biomarkers within tis-

sues, and as a tool for drug discovery.[10–12] Recently, the
application of MALDI-IMS has been extended to examine
peptidome complexity in centipede venom glands.[13,14]

We conducted a pilot MALDI-IMS study using transverse
sections of the sea anemone, Oulactis muscosa, a species found
along the eastern Australian coastline. Regions of interest (ROI)
were selected based on biological functions and associated

cnidae profile (Fig. 1a–e). External ROI included tentacles
(prey capture and immobilisation), acrorhagi and frill (defence),
and column (external defence). Internal ROI included the

actinopharynx (throat) and mesenterial filaments, both used in
prey immobilisation and digestion. Fig. 1 displays the unique
individual spectra produced for each ROI, reflecting mass

diversity within each tissue region (individual masses for ROI
spectra and comparison provided in Supplementary Material,
Fig. S1).

Fig. 2 exemplifies the capability of MALDI-IMS, displaying
the distribution of three individual peptide masses, from which
we can potentially draw inferences linking biological function to
morphology. Fig. 2b highlights a putative peptide toxin, as it

occurs solely in the ectoderm of the tentacles, where cnidae are
densely packed. Fig. 2c shows a peptide with a distribution
restricted to muscular tissue, implying a physiological role, and

Fig. 2d shows a ubiquitously distributed peptide.
By utilising a venomics strategy that combines transcrip-

tomics and proteomics with MALDI-IMS, we can potentially

identify and correlate peptides according to tissue-specific
regions. These results will aid our understanding of the func-
tional evolution of sea anemone peptide toxins, while providing
a library of novel peptides and scaffolds that may be useful as

pharmacological tools or drug leads.

Supplementary Material

Individual masses for ROI spectra and comparison (Fig. S1) are
available on the Journal’s website.
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