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ABSTRACT 

Natural products isolation studies of 16 native Australian fern species have been undertaken, 
facilitated by pressurised hot water extraction (PHWE). Fourteen of these fern species have not 
been the subject of natural products isolation research previously. In total, 14 different com
pounds were isolated from 12 of these 16 different fern species. This included γ- and δ-lactones; 
flavonoid glycosides, a dihydrobenzofuran neolignan, in addition to hydroxycinnamate/caffeic acid 
esters. More specifically, the lactones 5,6-dihydro-5-hydroxy-6-methyl-2H-pyran-2-one, 5-(1- 
hydroxyethyl)-2(5H)-furanone and osmundalin were obtained from Todea barbara, while a 
dihydrobenzofuran neolignan, (−)-trans-blechnic acid were found in Austroblechnum penna- 
marina subsp. alpina, and the shikimate ester 5-O-caffeoylshikimic acid was isolated from 
Parablechnum wattsii. In addition, flavonoids and their glycoside derivatives, kaempferol 3-O- 
glucopyranoside, 4β-carboxymethyl-(−)-epicatechin, (2R)-eriodictyol-7-O-β-D-glucopyranoside, 
naringin, quercitrin, quercetin 3-O-(6″-acetyl)-β-D-glucopyranoside, rutin, and tiliroside were 
isolated from seven other fern species.  

Keywords: ferns, flavonoid, glycoside, natural products, natural products isolation, neolignan, 
Polystichum, Todea. 

Introduction 

Ferns are a group of vascular plants bearing complex leaves called megaphylls. These 
plants do not produce flowers or seeds and reproduce via spores. There are more than 
12 000 species of ferns that are widely distributed across the globe, with the greatest 
diversity typically found in the tropics.[1] Ferns represent the phylogenetic bridge 
between the lower and higher plants in the plant kingdom. For centuries, ferns have 
been used in many different contexts: as food, medicines, and ornaments. The fiddle
heads (or croziers) of many fern species often feature in Asian cuisine. Indeed, it is 
reported that 52 species feature in Chinese food and it is estimated that the actual 
number of edible ferns may extend to 144 species.[2] In Japan, ostrich (Matteuccia 
struthiopteris (L.) Tod.), bracken (Pteridium aquilinum (L.) Kuhn), and royal ferns 
(Osmunda japonica Thunb.) are the most popular edible ferns that are harvested.[3] 

In Australia, the sporocarps of the small freshwater fern, nardoo (Marselia drummondii 
A. Braun) are consumed as baked cakes by first nations people following proper and 
extensive preparation.[4] In addition to their use in cuisine, many fern species feature in 
traditional pharmacopoeias and are used to treat an array of ailments.[5–8] In this context, 
relative to other species of vascular plants, ferns and lycophytes are poorly 
represented.[9] 

Ferns and lycophytes, like angiosperms, are a rich source of phytochemicals with 
interesting biological properties. Natural products isolation studies reveal that they 
contain flavonoids, terpenoids (including steroids), and polyphenols (Fig. 1).[5,10] They 
also contain more distinctive alkaloid secondary metabolites. For example, lycopodium 
alkaloids such as lycopodine (1), lycodine (2), fawcettimine (3), and phlegmarine 
(4) skeletons have been isolated from Lycopodiaceae and Huperziaceae.[10–12] 

Flavonoids are commonly isolated from numerous fern species. For example, species of 
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the genus Pteris are rich in flavonoids with mainly α- and 
β-glucosides, galactosides, rhamnosides or arabinosides 
present.[13,14] Distinctive flavonoids that have been isolated 
include neoflavonoids, calomelanols A–J (5–14) from 

farinose of Pityrogramma calomelanos (L.) Link,[15,16] 

bioflavonoids such as hinokiflavone (15), 7″-O-methyl- 
hinokiflavone (16) amentoflavone (17) and 7,7″-di-O- 
methylamentoflavone (18) from Selaginella tamariscina 
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Fig. 1. Examples of secondary metabolites isolated from ferns and lycophytes: alkaloids (1–4), complex flavonoids (5–28), 
sesquiterpenoids (29–32) and miscellaneous natural products (33–37); *stereogenic centres were not assigned in these molecules   
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(P.Beauv.) Spring,[17] involvenflavones A–F (19–24) from 
S. involven (Sw.) Spring[18] and prenylated flavonoids 
(25–28) from Helminthostachys zeylanica (L.) Hook.[19] 

Many sesquiterpenoid compounds with indane or cadinene 
skeletons are found in ferns.[10] Sesquiterpenyl indanones, 
known as pterosins, and their glycosides (pterosides) have 
been isolated from bracken fern species and polypodiaceous 
ferns.[20] For example, multifidosides A–C (29–31) have been 
isolated from Pteris multifida Poir.[14] and the carcinogenic 
pteroside, ptaquiloside (32) has been isolated from Pteridium 
aquilinium (L.) Kuhn.[21] The terpenoids obtained from ferns 
are typically ent-kaurane-, ent-atisane- and ent-primarane-type 
diterpenoids, which are present in Pteris species.[22] Labdane- 
and clerodane-type diterpenoids, diterpenoid glycosides and 
triterpenoids are major constituents in the Gleicheniaceae 
family,[23–26] and ecdysteroids have been isolated from species 
of genera Microsorum and Diplopterygium in the family 
Polypodiaceae.[27–31] Phenolic compounds are another class 
of secondary metabolites widely distributed in ferns. 
Commonly isolated molecules of this type include caffeic 
(33), chlorogenic (34) and vanillic (35) acids.[10,32,33] The 
glycosylated phenolic acid, 7-O-caffeoylhydroxymaltol-3-β-D- 
glucopyranoside (36) was isolated from Pteris ensiformis 
Burm.,[33–35] in addition to a chalcone derivative, licoagro
chalcone D (37) from Pteris multifida Poir.[36] 

Natural products research concerning ferns native to 
Australia are mainly restricted to toxicity studies. For exam
ple, the sporocarps of the freshwater fern nardoo, Marsilea 
drummondii A. Braun, which are used for food by Australian 
Aborigines,[4] are reportedly toxic to humans, cattle, and 
sheep.[37] Studies on this waterfern has revealed that 
its toxicity derives from high levels of the enzyme thiami
nase which breaks down thiamine (vitamin B1).[38] 

Similarly, bracken ferns Pteridium aquillinum (L.) Kuhn 
and P. esculentum (G.Forst.) Nakai have been the subject 
of many phytochemical and pharmacological studies in 
order to elucidate the mechanism of toxicity involving 
the carcinogenic norsesquiterpene glucoside, ptaquiloside 
(32).[39–42] Consequently, many sesquiterpenoid compounds 
have been isolated from P. aquillinum (L.) Kuhn.[20,43–45] 

The presence of ptaquiloside has been reported in fern spe
cies from the genera Pteris, Microlepia, Hypolepis and 
Chelianthes.[43,44,46] Beyond their toxicity, very limited 
information regarding the phytochemistry of ferns found in 
Australia exists. Nevertheless, due to their wide geographic 
distribution, many native Australian ferns are also found in 
Asia and South America and natural products isolation stud
ies of species found in these locations have been undertaken. 
For example, Helminthostachys zeylanica (L.) Hook which is 
found widely distributed in tropical parts of Asia, the Pacific 
region, and Australia,[1] contains prenylated flavonoids, ugo
nins,[47,48] cyclised geranyl stilbenes, and ugonstiblenes.[49] 

Similarly, Salvinia species have a global distribution and 
the species, S. auriculata Aubl. and a hybrid, S.xmolesta 
D.S.Mitch. are found in Australia.[1] Bioactivity-guided 

phytochemical investigation of these two Australian species 
allowed for the isolation of more than sixty different second
ary metabolites that include diterpenes, polyphenols, fatty 
acids, triterpene, apocarotenoids, acyclic sesquiterpenoids, 
monoterpenes, jasmonates, steroids and coumarins.[50–52] 

However, a large number of native Australian ferns, particu
larly endemic species, have not been the subject of natural 
products isolation studies. 

In this report, a total of 16 Australian native fern species 
formed the basis of natural products isolation studies. 
Specifically, our research concerned Todea barbara (L.) 
T. Moore, Alsophila australis (R.Br.) Domin, Dicksonia 
antarctica Labill., Calochlaena dubia (R.Br.) M. D. Turner 
& R. A. White, Polystichum proliferum (R.Br.) C. Presl, 
P. vestitum (G. Forst.) C. Presl, Pellaea falcata (R.Br.) Fée, 
Lecanopteris pustulata subsp. pustulata (G. Forst.) Testo & 
A. R. Field, Oceaniopteris cartilaginea (Sw.) Gasper & Salino, 
Lomaria nuda (Labill.) Willd., Doodia australis (Parris) 
Parris, Austroblechnum penna-marina (Poir.) Gasper & 
V. A. O. Dittrich subsp. alpina (R.Br.) S. Jess. & L. Lehm., 
Parablechnum wattsii (Tindale) Gasper & Salino, Gleichenia 
alpina R.Br., Histiopteris incisa (Thunb.) J.Sm. and Pteridium 
esculentum (G. Forst.) Nakai subsp. esculentum. Two of these 
species, Polystichum vestitum (G. Forst.) C. Presl and 
Gleichenia alpina R.Br., were previously thought to be ende
mic to Tasmania,[53] however, these species were recently 
found in New Zealand.[1] We isolated a total of 14 different 
compounds (38–51) from 12 native Australian fern species, 
including γ- and δ-lactones; flavonoid glycosides, a dihydro
benzofuran neolignan, in addition to hydroxycinnamate/ 
caffeic acid esters (Fig. 2). 

Results and discussion 

For each of the 16 native Australian fern species that we 
investigated, PHWE of leaf material, followed by liquid– 
liquid extraction of the aqueous PHWE extract with ethyl 
acetate provided a crude organic extract after concentration 
under reduced pressure. In each case, the remaining aqueous 
phase was concentrated under reduced pressure to afford a 
crude aqueous extract. The combined yield (% w/w) of the 
respective crude extracts thus obtained is shown in Table 1. 
With the exception of P. vestitum (0.38% w/w), yields of 
crude extracts were >0.5% w/w in all cases. The crude 
extracts were then subjected to various standard flash col
umn chromatography and preparative thin layer chromatog
raphy procedures. 

Dicksonia antarctica and Pteridium esculentum are the 
only 2 of these 16 fern species that have been the subject of 
previous natural products isolation studies. Previously, the 
phenolic compounds (5S,6S,9S,10S)-15-hydroxycadina-3,11- 
dien-2-one and p-hydroxystyrene β-vicianoside, in addition to 
p-hydroxystyrene β-D-glucoside, kaempferol 3-O-β-D-glucoside, 
kaempferol 3-O-(2-O-β-D-xylosyl)-β-D-glucoside, kaempferol 
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Fig. 2. Secondary metabolites 38–51 isolated from 12 of the 16 native Australian fern species investigated in this study.    

Table 1. Yields (% w/w) of the respective crude extracts obtained following PHWE of 16 native Australian fern species in this study.       

Entry Fern species Leaf material (g) Crude extract (mg) Yield (% w/w)   

1 Todea barbara  29  646  2.23 

2 Alsophila australis  30  268  0.89 

3 Calochalaena dubia  30  575  1.92 

4 Polystichum vestitum  30  114  0.38 

5 Polystichum proliferum  30  240  0.80 

6 Pellaea falcata  30  1000  3.33 

7 Austroblechnum penna-marina subsp. alpina  29  409  1.41 

8 Lecanopteris pustulata subsp. pustulata  30  154  0.51 

9 Lomaria nuda  30  254  0.85 

10 Parablechnum wattsii  30  523  1.74 

11 Gleichenia alpina  29  793  2.73 

12 Dicksonia antarctica  30.5  298  0.98 

13 Doodia australis  31  617  1.99 

14 Oceaniopteris cartilaginea  33  1500  4.55 

15 Histiopteris incisa  35  877  2.51 

16 Pteridium esculentum  150  2700  1.80   
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3-O-(6-p-coumaroyl)-β-D-glucoside and chlorogenic acid have 
been isolated from P. esculentum fronds (1.2 kg of dry 
plant material).[54] 4-O-Caffeoylshikimic acid and 4-O-(p- 
coumaroyl) shikimic acid were isolated from croziers of 
D. antarctica (2.4 kg of fresh plant material) in 1997.[55,56] 

In this present study, secondary metabolites were not isolated 
from D. antarctica, Doodia australis, Oceaniopteris cartilagi
nea and Histiopteris species. However, 14 different com
pounds were isolated from the remaining 12 fern species we 
investigated. A combination of standard 1H, 13C and 2D 
(COSY, HMBC and HSQC) NMR spectroscopic techniques 
were employed to elucidate the structures of these compounds. 
In each case, these data were consistent with equivalent data 
reported in the literature. Specifically, we obtained 5,6-dihydro- 
5-hydroxy-6-methyl-2H-pyran-2-one (38), 5-(1-hydroxyethyl)- 
2(5H)-furanone (39), osmundalin (40), astragalin (41), 
4β-carboxymethyl-(−)-epicatechin (42), (2R)-eriodictyol-7- 
O-β-D-glucopyranoside (43), naringin (44), (−)-trans-blechnic 
acid (45), (p-hydroxybenzyl)malonic acid (46), quercitrin 
(47), quercetin 3-O-(6″-acetyl-β-D-glucopyranoside) (48), 5-O- 
caffeoylshikimic acid (49), rutin (50), and tiliroside (51) 
(Fig. 2). 

5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one (38) and 
5-(1-hydroxyethyl)-2(5H)-furanone (39) were obtained as a 
mixture from Todea barbara in a ~2:1 ratio, as judged by 
NMR spectroscopic and GC-MS analysis (see Supplementary 
Material). Osmundalin (40) was also isolated from T. barbara. 
Lactones 38–40 have been isolated from Osmunda japonica, a 
common Japanese fern species, and are reported to exhibit 
antifeedant properties against the larvae of yellow butterfly, 
Eurema hecabe mandarina.[57,58] In addition, all three natural 
products have also been isolated from Angiopteris caudati
formis, a fern species used in Chinese folk medicine for the 
treatment of a broad range of ailments.[59] Natural products 
38 and 39 have been isolated from the fern species 
A. esculenta[60] and angiopteroside, an epimer of osmundalin 
(40), was isolated from Angiopteris evecta.[61] 

4β-Carboxymethyl-(−)-epicatechin (42),[62] was isolated 
from Polystichum vestitum. This secondary metabolite has been 
isolated from Davallia divaricata,[62] D. solida[63] and 
Dryopteris crassirhizoma.[64] We also obtained molecule 42 
from Polystichum proliferum and Lecanopteris pustulata 
subsp. pustulata. All of these fern species are members in the 
order Polypodiales. Dihydrobenzofuran neolignane, (−)-trans- 
blechnic acid (45) was isolated from Austroblechnum penna- 
marina subsp. alpina; a species formerly classified within the 
genus Blechnum. (−)-trans-Blechnic acid (45) and its epimer, 
epiblechnic acid, represent characteristic constituents of 
the family Blechnaceae.[65] Blechnic acid has been isolated 
from various fern species, including Blechnopsis orientalis, 
Spicantopsis amabilis, S. niponica, Woodwardia orientalis, 
W. prolifera, Brainea insignis[65] and Struthiopteris 
spicant.[66] We isolated 5-O-caffeoylshikimic acid (49) 
(0.5% w/w yield) from Parablechnum wattsii (also formerly 
in the genus Blechnum). Compound 49 is a major secondary 

metabolite present in this fern and a known enzymatic 
browning agent present in dates, Phoenix dactylifera.[55,67] 

It is a major phytochemical and an anti-thiamine factor 
isolated from Pteridium aquillinum var. latiusculum and 
reportedly causes depression of leucocytes and thrombocytes 
in calves.[68] 5-O-Caffeoylshikimic acid is found widely 
distributed in Equisetaceae family and in ferns from 
the families Adiantaceae, Dryopteridaceae, Athyriaceae, 
Dennstaedtiaceae, Osmundaceae and Thelypteridaceae.[69] 

Interestingly, we isolated p-hydroxybenzylmalonic acid 
(46) and 4β-carboxymethyl-(–)-epicatechin (42) from 
Lecanopteris pustulata subsp. pustulata. Natural product 46 
has been isolated from liquorice previously.[70] Liquorice 
primarily derives from three species, Glycyrrhiza glabra, 
Glycyrrhiza uralensis and Glycyrrhiza inflata and the pres
ence of p-hydroxybenzylmalonic acid (46) has been reported 
from all three.[71] 

Flavonoid glycosides 41, 43, 44, 47, 48, 50, and 51 were 
also isolated in our study. Specifically, we obtained the 
common flavonoid glucoside astragalin (41) from Alsophila 
australis, Calochalaena dubia and Pteridium esculentum. 
It has been isolated from many plant species including 
from the bracken fern P. aquilinum.[72–76] We isolated (2R)- 
eriodictyol-7-O-β-D-glucopyranoside (43) from P. vestitum. 
This natural product has been isolated from a wide range of 
flowering plants.[77–85] In ferns, its presence has been identi
fied in species of Pyrrosia.[86] Molecule 43 is a reported Nrf2 
activator and confers protection against cisplatin-induced 
toxicity and cerebral ischemic injury.[84,87] Naringin (44) and 
rutin (50) were isolated from Pellaea falcata and Gleichenia 
alpina, respectively. Both are commonly reported flavonoid 
glycosides found in citrus, and exhibit a broad range of pharma
cological activity.[88–95] Compounds 44 and 50 have also been 
found in fern species.[96–99] Trace amounts of quercitrin (47) 
and quercetin 3-O-(6″-acetyl)-glucoside (48) were isolated from 
Lomaria nuda. Both molecules are present in an array of 
plant species and possess wide ranging biological properties. 
Tiliroside (51), a kaempferol flavonoid glucoside with a cou
maroyl moiety, was isolated from Pteridium esculentum. Its 
presence has been identified in various plant species, including 
P. aquilinum; and compound 51 is a reported carcinogen found 
in bracken fern.[100–103] However, tiliroside also exhibits 
profound anti-hyperglycemic, anti-hyperlipidemic and anti
oxidant effects, and has potential therapeutic applications 
for the treatment of diabetes.[100,104–106] 

Among the 14 secondary metabolites isolated in this 
study, osmundalin (40), 4β-carboxymethyl-(−)-epicatechin 
(42) and trans-blechnic acid (45) have only been isolated 
from fern sources to date (Table 2). This reveals that various 
Australian fern species investigated in our study contain sec
ondary metabolites that are consistent with other members in 
the genera, families or orders that are found distributed 
beyond Australia. For example, Todea barbara is exclusively a 
southern hemisphere species and both Osmunda japonica and 
Angiopteris caudatiformis are species found in eastern Asia 
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regions. trans-Blechnic acid (45) has only been obtained from 
fern species of the family Blechnaceae. The remaining natural 
products are regularly isolated from angiosperms, including 
various fern species. 4β-Carboxymethyl-(−)-epicatechin (42) 
is a particularly rare natural product and its isolation solely 
from ferns suggests that its formation might derive from a 
biosynthetic pathway unique to certain fern species (Scheme 1). 

Conclusions 

Our natural products isolation studies provide further evi
dence that fern species represent a source of structurally 

diverse phytochemicals with interesting biological propert
ies. Phytochemical screening of 16 native Australian ferns 
enabled the isolation of 14 previously reported compounds. 

Table 2. Distribution of isolated secondary metabolites 38–51 in ferns species.     

Natural product Ferns Exclusive to fern 
species   

38: osmundalactone Todea barbara; Osmunda japonica – 

Angiopteris caudatiformis 

39: 5-(1-hydroxyethyl)-2(5H)-furanone Todea barbara; Osmunda japonica – 

Angiopteris caudatiformis 

40: osmundalin Todea barbara; Osmunda japonica Yes 

Angiopteris caudatiformis 

41: astragalin Alsophila australis; Calochalaena dubia – 

Pteridium esculentum; Pteridium aquilinum 

42: 4β-carboxymethyl-(–)-epicatechin Davallia divaricate; Davallia solida Yes 

Dryopteris crassirhizoma 

Polystichum vestitum; Polystichum proliferum 

Lecanopteris pustulata subsp. pustulata 

43: (2R)-eriodictyol-7-O-β-D-glucopyranoside Polystichum vestitum; Pyrrosia (genus) – 

44: naringin Pellaea falcata; Elaphoglossum spathulatum – 

Ceterach officinarum; Drynaria fortune 

45: trans-blechnic acid Austroblechnum penna-marina subsp. alpina Yes 

Blechnopsis orientalis; Spicantopsis amabilis 

Spicantopsis niponica; Struthiopteris spicant 

Woodwardia orientalis 

Woodwardia prolifera; Brainea insignis 

46: p-hydroxybenzylmalonic acid Lecanopteris pustulata subsp. pustulata Diplazium esculentum – 

47: quecertin-3-O-(6′-O-acetyl)glucoside Lomaria nuda – 

48: quercitrin Lomaria nuda – 

49: 5-O-caffeoylshikimic acid Parablechnum wattsii; Phoenix dactylifera – 

Dicksonia antarctica 

Pteridium aquilinum var. latiusculum 

50: rutin Gleichenia alpina – 

Sphaerostephanos arbusculus 

51: tiliroside Pteridium esculentum; Pteridium aquilinum –   

OHO

OH OH

OH

OH

OH

O
42

52

via either carbocation or
epoxide intermediates

derived from 52

SCoA

Scheme 1. Overview of possible biosynthetic pathway leading to 
4β-carboxymethyl-(−)-epicatechin (42).   
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The structures of these compounds were primarily elucidated 
via 1D (1H and 13C) and 2D (COSY, HSQC and HMBC) NMR 
spectroscopy. In each case, the characterisation data were 
consistent with equivalent data reported in the literature. 
These isolated compounds included flavonoid glycosides, 
caffeic acid esters, lactones, and a dihydrobenzofuran 
neolignan. Lactone molecules, 5,6-dihydro-5-hydroxy-6- 
methyl-2H-pyran-2-one, 5-(1-hydroxyethyl)-2(5H)-furanone 
and osmundalin were isolated from Todea barbara. 4β- 
Carboxymethyl-(−)-epicatechin was isolated from both spe
cies of Polystichum investigated in this study. Our isolation of 
(−)-trans-blechnic acid from Austroblechnum penna-marina 
subsp. alpina is consistent with this natural product repre
senting a characteristic compound in the family Blechnaceae. 

Experimental 

Plant material 

Leaf material from 13 ferns Todea barbara, Alsophila australis, 
Dicksonia antarctica, Calochlaena dubia, Polystichum prolif
erum, P. vestitum, Pellaea falcata, Lecanopteris pustulata 
subsp. pustulata, Oceaniopteris cartilaginea, Lomaria nuda, 
Doodia australis, Austroblechnum penna-marina subp. alpina 
and Parablechnum wattsii were collected from the Royal 
Botanical Gardens of Tasmania in Hobart during February 
2020. Aerial parts of Gleichenia alpina was collected from 
Wombat Moor at Mt Field National Park (42.6829°S, 
146.6174°E; 1073 m above sea level) in February 2021. 
Histiopteris incisa was collected from Mt Field National 
Park (42.7806°S, 146.5844°E; 461 m above sea level) in 
February 2021. Aerial parts of Pteridium esculentum were 
collected from five healthy plants growing at Marion Bay 
(42.8218°S, 147.8671°E) in October 2021. Voucher specimens 
have been provided to the Tasmanian Herbarium, Tasmanian 
Museum and Art Gallery (no. HO607603–HO607618). 
With the exception of Pteridium esculentum, all plant material 
was air-dried for 2 weeks and stored prior to extraction. 
P. esculentum plant material was dried in an oven at 45°C 
for 3 days prior to extraction. 

General 

Solvents used in all experiments were of analytical grade or 
purified by standard laboratory procedures. Plant material 
was ground using a Sunbeam spice grinder. Pressurised hot 
water extraction (PHWE) was performed using Breville 
Expresso Machine Model 800ES. This PHWE method is a 
well-established natural products extraction technique.[107–109] 

The extracted organic solvents were dried using anhydrous 
MgSO4 and Na2SO4. Solvents were removed under reduced 
pressure on a rotary evaporator. Flash column chromatography 
was performed using flash grade silica gel (Kieselgel 60). 
Automated flash chromatography was performed using a 
Grave Reveleris X2 flash column chromatography system or 

a Büchi Flash Pure system with 40 µm silica gel cartridges. 
TLC analysis was performed using Merck silica gel 60-F254 
plates. NMR spectroscopy was performed on a Bruker Avance 
III NMR spectrometer operating at 400 MHz (1H) and 
100 MHz (13C) or Bruker AscendTM 600 NMR spectrometer 
operating at 600 MHz for (1H) and 150 MHz (13C). The deu
terated solvents used were D2O, CDCl3, acetone-d6, CD3OD 
and DMSO-d6. Spectra were calibrated by assignment of the 
residual solvent peak to δH 7.26 and δC 77.16 for CDCl3; 
δH 2.50 and δC 39.52 for DMSO-d6; δH 3.31 and δC 49.00 
for CD3OD; δH 4.79 for D2O; and δH 2.05 and δC 29.84 for 
acetone-d6.[110] Infrared spectroscopy was performed using a 
Shimadzu FTIR 8400s spectrometer, with samples prepared 
as thin films on NaCl plates. Gas chromatography mass 
spectrometry (GC-MS) experiments were performed on 
Agilent 6850 GC and Agilent 5975C mass spectrometers. 
HRESIMS analyses were conducted on a Thermo LTQ 
Orbitrap XL mass spectrometer (Thermo Fisher Scientific). 

Extraction and isolation 

PHWE of Todea barbara 
T. barbara dried leaflets (29 g) were finely ground using a 

spice grinder, mixed with sand (~4 g), and extracted via 
PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated a further two times to provide a com
bined extract (600 mL). The extract was concentrated under 
reduced pressure (35°C) to remove EtOH and extracted with 
EtOAc (150 mL and 2 × 100 mL). The combined organic 
phase was dried (MgSO4), filtered, and concentrated under 
reduced pressure to provide extract A (646 mg). The remain
ing aqueous phase was concentrated under reduced pressure 
(50°C) to yield a dark brown extract B (10 g). Extract A: 
Extract A (646 mg) was redissolved in EtOAc, adsorbed onto 
silica/Celite® (1:1 mixture by mass), and subjected to flash 
column chromatography {silica; hexanes (50 mL), 10% ace
tone/hexanes (50 mL), 20% acetone/hexanes (100 mL), 30% 
acetone/hexanes (150 mL), 40% acetone/hexanes (100 mL), 
50% acetone/hexanes (50 mL), 60% acetone/hexanes 
(50 mL) and acetone (150 mL)} to provide a mixture of 
compounds 38 and 39 (23 mg, 0.8% w/w yield in a ~2:1 
ratio) as colourless crystalline solids. This mixture was ana
lysed by GC-MS. Extract B: Extract B (10 g) was soaked in 
MeOH (~200 mL) for 1 h, repeated five times, combined, 
and concentrated to provide extract B.1 (4 g). Extract B.1 
was then soaked in acetone (~200 mL) for 1 h, repeated 
5 times, combined, and concentrated to provide extract B.2 
(~2 g). Extract B.2 (~1 g) was redissolved in acetone, 
absorbed onto silica/Celite® (1:1 mixture by mass), and 
subjected to flash column chromatography {silica; hexanes 
(50 mL), 10% acetone/hexanes (100 mL), 50% acetone/ 
hexanes (50 mL), acetone (50 mL) and 50% MeOH/acetone 
(50 mL)}. Following TLC and 1H NMR spectroscopic analysis, 
the resulting fractions were combined to afford six fractions, 

T. Gyeltshen et al.                                                                                                                    Australian Journal of Chemistry 

428 



F.1–6. Fraction F.5 (709 mg) was again adsorbed onto 
silica/Celite® (1:1 mixture by mass) and subjected to flash 
column chromatography {silica; hexanes (50 mL), 10% 
acetone/hexanes (50 mL), 30% acetone/hexanes (200 mL), 
50% acetone/hexanes (200 mL), and acetone (30 mL)}, 
which provided compound 40 (570 mg, 2.0% w/w yield) as 
an off-white solid. Extract B.1 (1.5 g) was absorbed onto silica/ 
Celite® (1:1 mixture by mass) and subjected to flash column 
chromatography {silica; CH2Cl2 (75 mL), 13% MeOH/CH2Cl2 
(150 mL), 27% MeOH/CH2Cl2 (75 mL), 53% MeOH/CH2Cl2 
(150 mL) and MeOH (100 mL)}. Following TLC and 1H NMR 
spectroscopic analysis the resulting fractions were combined to 
afford four fractions, F.1–4. Fraction F.3 (641 mg) was redis
solved in MeOH, absorbed onto silica/Celite® (1:1 mixture by 
mass) and subjected to flash column chromatography {silica; 
CH2Cl2 (50 mL), 25% MeOH/CH2Cl2 (100 mL), 66% MeOH/ 
CH2Cl2 (75 mL) and MeOH (50 mL)}, which provided com
pound 40 (30 mg, 2.0% w/w yield) as an off-white solid. 

Osmundalactone (38).[57] Colourless crystalline solid. 1H 
NMR (600 MHz, CDCl3) δ 6.78 (1H, dd, J = 9.9 and 2.3 Hz; 
H-4), 5.92 (1H, dd, J = 9.9 and 1.9 Hz; H-3), 4.31 (1H, m; 
H-6), 4.18 (1H, d, J = 8.7 Hz; H-5), 1.42 (3H, d, J = 6.4 Hz; 
7-CH3) ppm; 13C NMR (150 MHz, CDCl3) δ 163.2 (C-2), 
148.5 (C-4), 120.7 (C-3), 79.0 (C-6), 67.7 (C-5), 18.2 
(7-CH3) ppm. 

5-(1-Hydroxyethyl)-2(5H)-furanone (39).[57,58] Colour- 
less crystalline solid. 1H NMR (600 MHz, CDCl3) δ 4.35 
(1H, m; H-5), 4.08 (1H, m; H-6), 2.53 (1H, m; H-3a), 2.48 
(1H, m; H-3b), 2.19 (1H, m; H-4a), 2.12 (1H, m; H-4b), 1.13 
(3H, d, J = 6.5 Hz; 7-CH3) ppm; 13C NMR (150 MHz, CDCl3) 
δ 177.5 (C-2), 83.5 (C-5), 67.4 (C-6), 28.6 (C-3), 20.9 (C-4), 
17.7 (7-CH3) ppm. 

Osmundalin (40) (CAS# 54835-71-1).[57] Off-white 
solid. [α] –65.1° (c 0.075, MeOH), lit. [α] –107° (c 
1.0, MeOH).[58] 1H NMR 600 MHz, CD3OD) δ 7.04 (1H, 
dd, J = 9.9 and 2.9 Hz; H-3), 5.98 (1H, dd, J = 9.9 and 
1.5 Hz; H-2), 4.48 (1H, quintet, J = 7.4 Hz; H-5), 4.45 
(1H, d, J = 7.8 Hz; H-1′), 4.43 (1H, ddd, J = 7.6, 2.8 
and 1.5 Hz; H-4), 3.85 (1H, dd, J = 11.8 and 5.6 Hz; 
H-6′b), 3.79 (1H, dd, J = 11.8 and 1.9 Hz; H-6′a), 3.33 
(1H, t, J = 8.9 Hz; H-3′), 3.26 (2H, m; H-4′,5′), 3.16 (1H, 
t, J = 9.1 Hz; H-2′), 1.42 (3H, d, J = 6.5 Hz; 6-CH3) ppm;  
13C NMR (150 MHz, CD3OD) δ 165.14 (C-1), 147.71 (C-3), 
121.55 (C-2), 102.81 (C-1′), 79.29 (C-5), 78.16 (C-5′), 77.95 
(C-3′), 74.82 (C-2′), 73.36 (C-4), 71.49 (C-4′), 62.72 (C-6′), 
18.57 (C-6) ppm. 

PHWE of Alsophila australis 
A. australis dried leaflets (30 g) were finely ground using 

a spice grinder, mixed with sand (~6 g), and extracted via 
PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated a further two times to provide a 
combined extract (600 mL). The extract was concentrated 
under reduced pressure (35°C) to remove EtOH and extracted 

with EtOAc (2 × 200 mL and 150 mL). The combined organic 
phase was dried (MgSO4), filtered, and concentrated under 
reduced pressure to provide extract A (268 mg). The remain
ing aqueous phase was concentrated under reduced pressure 
(50°C) to yield a dark brown extract B (7 g). Extract A: Extract 
A (268 mg) was redissolved in EtOAc and MeOH, absorbed 
onto silica/Celite® (1:1 mixture by mass), and subjected to 
flash column chromatography {silica; hexanes (100 mL), 
50% EtOAc/hexanes (100 mL), EtOAc (100 mL), 10% 
MeOH/EtOAc (100 mL) and 20% MeOH/EtOAc (100 mL)}. 
Following TLC and 1H NMR spectroscopic analysis, the 
resulting fractions were combined to afford five fractions, 
F.1–5. Fraction F.3 (146 mg) was redissolved in EtOAc and 
MeOH, adsorbed onto absorbed onto silica/Celite® (1:1 mix
ture by mass), and subjected to flash column chromatogra
phy {silica; CH2Cl2 (150 mL), 20% EtOAc/CH2Cl2 (100 mL), 
40% EtOAc/CH2Cl2 (100 mL), 60% EtOAc/CH2Cl2 (100 mL), 
80% EtOAc/CH2Cl2 (100 mL), EtOAc (100 mL) and 20% 
MeOH/EtOAc (100 mL)}, which afforded compound 41 
(12 mg, 0.04% w/w) as a pale-yellow solid. 

Astragalin (41) (CAS# 480-10-4).[73,75] Pale-yellow solid.  
1H NMR (600 MHz, CD3OD) δ 8.06 (2H, d, J = 8.9 Hz; 
H-2′,6′), 6.90 (2H, d, J = 8.9 and 1.9 Hz; H-3′, 5′), 6.41 
(1H, d, J = 2.1 Hz; H-8), 6.21 (1H, d, J = 2.1 Hz; H-6), 
5.26 (1H, d, J = 7.4 Hz; H-1″), 3.69 (1H, dd, J = 11.9 and 
2.3 Hz; H-6a″), 3.53 (1H, dd, J = 11.9 and 5.6 Hz; H-6b″), 
3.40–3.46 (2H, m; H-2″,3″), 3.32 (1H, m; H-4″), 3.21 (1H, m; 
H-5″) ppm; 13C NMR (150 MHz, CD3OD) δ 179.54 (C-4), 
165.98 (C-7), 163.10 (C-5), 161.58 (C-4′), 159.09 (C-2), 
158.52 (C-9), 135.45 (C-3), 132.28 (C-2′,6′), 122.80 (C-1′), 
116.07 (C-3′,5′), 105.75 (C-10), 104.04 (C-1″), 99.87 (C-6), 
94.73 (C-8), 78.43 (C-5″), 78.04 (C-3″), 75.73 (C-2″), 71.36 
(C-4″), 62.62 (C-6″) ppm. 

PHWE of Calochlaena dubia 
C. dubia leaflets (30 g) were finely ground using a spice 

grinder, mixed with sand (~6 g), and extracted via PHWE 
(35% EtOH/H2O). This provided a hot extract (200 mL) that 
was cooled immediately in an ice bath. This process was 
repeated a further two times to provide a combined extract 
(600 mL). The extract was concentrated under reduced pres
sure (35°C) to remove EtOH and extracted with EtOAc 
(3 × 200 mL). The combined organic phase was dried 
(MgSO4), filtered, and concentrated under reduced pressure 
to provide dark green extract A (575 mg). The remaining 
aqueous phase was concentrated under reduced pressure 
(50°C) to yield a dark brown extract B (10 g). Extract A: 
Extract A (315 mg) was redissolved in MeOH and EtOAc, 
absorbed onto silica/Celite® (1:1 mixture by mass), and 
subjected to automated flash chromatography {silica car
tridge (24 g); 0–100% EtOAc/hexanes and 0–50% MeOH/ 
EtOAc, for 12 min with flow rate of 28 mL/min}. Following 
TLC and 1H NMR spectroscopic analysis, the resulting frac
tions were combined to give nine fractions, F.1–9. Fraction 
F.8 (41 mg) was subjected to flash column chromatography 
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{silica; CH2Cl2 (50 mL), 10% MeOH/CH2Cl2 (200 mL) and 
50% MeOH/CH2Cl2 (20 mL)}, which provided compound 
41 (4 mg, 0.014% w/w). 

PHWE of Polystichum vestitum 
P. vestitum dried leaflets (30 g) were finely ground using 

a spice grinder, mixed with sand (~6 g), and extracted via 
PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated a further two times to provide a 
combined extract (600 mL). The extract was concentrated 
under reduced pressure (35°C) to remove EtOH and 
extracted with EtOAc (150 mL and 2 × 100 mL). The com
bined organic phase was dried (Na2SO4), filtered, and con
centrated under reduced pressure to provide extract A 
(114 mg). The remaining aqueous phase was concentrated 
under reduced pressure (50°C) to yield a dark brown extract 
B (7 g). Extract A: Extract A (114 mg) was redissolved in 
EtOAc and MeOH, adsorbed onto silica/Celite® (1:1 mixture 
by mass), and subjected to automated flash column chroma
tography {silica cartridge (4 g); 0–100% EtOAc/hexanes 
and 0–50% MeOH/EtOAc, for 26 min with flow rate 
12 mL/min)} and afforded compound 42 (30 mg, 0.1% w/w) 
as a light brown solid. Following TLC and 1H NMR spectro
scopic analysis, the fractions were combined to give six 
fractions, F.1–6. Fractions F.3–5 (27 mg) were combined 
and subjected to flash column chromatography {silica; 
CH2Cl2 (50 mL), 5% MeOH/CH2Cl2 (50 mL), 15% MeOH/ 
CH2Cl2 (50 mL) and 40% MeOH/CH2Cl2 (30 mL)} to provide 
compound 43 (4 mg) as a yellow solid. Extract B: Extract B 
(4 g) was redissolved in MeOH and water, adsorbed onto 
silica/Celite® (1:1 mixture by mass), and fractionated 
through a silica plug (150 mL of EtOAc, 10% MeOH/ 
EtOAc, 20% MeOH/EtOAc, 30% MeOH/EtOAc, 40% 
MeOH/EtOAc and 50% MeOH/EtOAc) which afforded six 
fractions, F.1–6. Following 1H NMR spectroscopic analysis, 
fractions F.1 and 2 (145 mg) were recombined, absorbed 
onto silica and subjected to flash column chromatography 
{silica; CH2Cl2 (100 mL), 2.5% MeOH/CH2Cl2 (100 mL), 5% 
MeOH/CH2Cl2 (100 mL), 10% MeOH/CH2Cl2 (100 mL), 15% 
MeOH/CH2Cl2 (100 mL), 20% MeOH/CH2Cl2 (100 mL) and 
35% MeOH/CH2Cl2 (100 mL)} to provide compound 42 
(10 mg, 0.035% w/w). 

4β-Carboxymethyl-(–)-epicatechin (42) (CAS# 146805- 
53-0).[62] Light-brown solid. 1H NMR (600 MHz, acetone- 
d6) δ 7.08 (1H, d, J = 1.7 Hz; H-2′), 6.87 (1H, dd, J = 8.2 
and 1.8 Hz; H-6′), 6.81(1H, d, J = 2.2 Hz; H-5′), 6.04 (1H, d, 
J = 2.2 Hz; H-8), 5.94 (1H, d, J = 2.2 Hz; H-6), 4.93 (1H, s; 
H-2), 4.01 (1H, s; H-3), 3.46 (1H, d, J = 6.2 Hz; H-4), 3.05 
(1H, dd, J = 16.4 and 3.5 Hz; H-1b″), 2.45 (1H, dd, J = 16.4 
and 11.2 Hz; H-1a″) ppm. 13C NMR (150 MHz, acetone-d6) 
δ 173.9 (2″-COOH), 157.9 (C-7,9), 156.3 (C-5), 145.5 (C-4′), 
145.3 (C-3′), 132.2 (C-1′), 119.3 (C-6′), 115.6 (C-5′), 115.3 
(C-2′), 102.7 (C-10), 96.6 (C-8), 95.8 (C-6), 75.4 (C-2), 70.2 
(C-3), 39.1 (C-1″), 36.0 (C-4) ppm. 

(2R)-Eriodictyol-7-O-β-D-glucopyranoside (43) (CAS# 
38965-51-4).[80] Yellow solid. 1H NMR (600 MHz, CD3OD) 
δ 6.82 (1H, s, H-2′), 6.69 (2H, t, J = 10.9 Hz, H-5′,6′), 6.11 
(1H, s, H-6), 6.09 (1H, s, H-8), 5.23 (1H, d, J = 12.5 Hz, 
H-2), 4.87 (1H, t, J = 6.6 Hz, H-1″), 3.88 (1H, d, 
J = 12.1 Hz, H-6a″), 3.69 (1H, m, H-6b″), 3.42–3.47 (3H, 
m, H-2″,3″,5″), 3.39 (1H, m, H-4″), 3.13 (1H, dd, 
J = 17.5 Hz, H-3a), 2.75 (1H, d, J = 17.0 Hz, H-3b) ppm.  
13C NMR (150 MHz, CD3OD) δ 198.5 (C-4), 167.0 (C-7), 
164.9 (C-9), 164.6 (C-5), 146.9 (C-3′), 146.5 (C-4′), 131.5 
(C-1′), 119.3 (C-6′), 116.3 (C-5′), 114.8 (C-2′), 104.9 (C-10), 
101.2 (C-1″), 97.9 (C-8), 96.9 (C-6), 80.7 (C-2), 78.3 (C-3″), 
77.8 (C-5″), 74.7 (C-2″), 71.2 (C-4″), 62.3 (C-6″), 44.1 
(C-3) ppm. 

PHWE of Polystichum proliferum 
P. proliferum leaves (30 g) were finely ground using a 

spice grinder, mixed with sand (7 g), and extracted via 
PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated a further two times to provide a com
bined extract (600 mL). The extract was concentrated under 
reduced pressure (35°C) to remove EtOH and extracted with 
EtOAc (150 mL and 2 × 100 mL). The combined organic 
phase was dried (Na2SO4), filtered, and concentrated under 
reduced pressure to provide extract A (240 mg). The remain
ing aqueous phase was concentrated under reduced pressure 
(50°C) to afford a dark brown extract B (4 g). Extract A: 
Extract A (240 mg) was redissolved in CH2Cl2 and MeOH, 
adsorbed onto silica/Celite® (1:1 mixture by mass), and 
subjected to flash column chromatography {silica; CH2Cl2 
(200 mL), 10% MeOH/CH2Cl2 (100 mL), 20% MeOH/CH2Cl2 
(100 mL) and 40% MeOH/CH2Cl2 (200 mL)} which provided 
compound 42 (16 mg, 0.06% w/w). 

PHWE of Pellaea falcata 
P. falcata dried leaflets (30 g) were finely ground using 

a spice grinder, mixed with sand (~8 g), and extracted 
via PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated a further two times to provide a com
bined extract (600 mL). The extract was concentrated under 
reduced pressure (35°C) to remove EtOH and extracted with 
EtOAc (150 mL and 3 × 100 mL). The combined organic 
phase was dried (MgSO4), filtered, and concentrated under 
reduced pressure to provide extract A (1.0 g). The remaining 
aqueous phase was concentrated under reduced pressure 
(50°C) to yield a dark brown extract B (8 g). Extract A: 
Extract A (1.0 g) was redissolved in EtOAc and MeOH, 
adsorbed onto silica/Celite® (1:1 mixture by mass) and sub
jected to automated flash chromatography {silica cartridge 
(12 g); (0–100% EtOAc/hexanes and 0–50% MeOH/EtOAc 
for 21 min with a flow rate of 28 mL/min)}. Following TLC 
and 1H NMR spectroscopic analysis, the resulting fractions 
were combined to afford seven larger fractions, F.1–7. 

T. Gyeltshen et al.                                                                                                                    Australian Journal of Chemistry 

430 



Fraction F.5 was redissolved in MeOH, adsorbed onto 
silica/Celite® (1:1 mixture by mass) subjected to flash 
column chromatography {silica; CH2Cl2 (50 mL), 10% 
MeOH/CH2Cl2 (100 mL), 20% MeOH/CH2Cl2 (50 mL) and 
40% MeOH/CH2Cl2 (50 mL)} which provided compound 44 
(21 mg, 0.7% w/w) as a yellow solid. 

Naringin (44) (CAS# 10236-47-2).[111,112] Yellow solid.  
1H NMR (600 MHz, CD3OD) δ 7.32 (2H, d, J = 8.5 Hz; 
H-2′,6′), 6.82 (2H, d, J = 8.5 Hz; H-3′,5′), 6.18 (1H, d, 
J = 2.0 Hz; H-8), 6.16 (1H, d, J = 2.1 Hz; H-6), 5.37 (1H, 
dd, J = 12.9 and 2.7 Hz; H-2), 5.25 (1H, s; H-1″), 5.09 (1H, 
d, J = 7.6 Hz; H-1″), 3.93 (1H, s; H-2″), 3.85–3.90 (2H, m; 
H-6a″,5‴), 3.62–3.69 (2H, m; H-3‴,6b″), 3.57-3.60 (2H, m; 
H-2″,5″), 3.43–3.46 (1H, m; H-3″), 3.39 (2H, t, J = 9.5 Hz; 
H-4″,4‴), 3.16 (1H, dd, J = 17.2 and 12.9 Hz; H-3a), 
2.75 (1H, dd, J = 17.2 and 2.8 Hz; H-3b), 1.28 (3H, d, 
J = 6.2 Hz; 6‴-CH3) ppm. 13C NMR (150 MHz, CD3OD) 
δ 198.5 (C-4), 166.6 (C-7), 164.9 (C-5), 164.6 (C-9), 159.1 
(C-4′), 130.8 (C-1′), 129.1 (C-2′,6′), 116.3 (C-3′,5′), 104.9 
(C-10), 102.5 (C-1‴), 99.4 (C-1″), 97.8 (C-6), 96.7 (C-8), 
80.7 (C-2), 79.0 (C-2″), 78.9 (C-3″), 78.1 (C-5″), 73.9 
(C-4″‘), 72.2 (C-3‴), 71.2 (C-2‴), 71.2 (C-4″), 69.9 (C-5‴), 
62.3 (C-6″), 44.1 (C-3), 18.2 (6‴-CH3) ppm. 

PHWE of Austroblechnum penna-marina subsp. 
alpina 

A. penna-marina subsp. alpina dried leaflets (29 g) were 
finely ground using a spice grinder, mixed with sand 
(~7.5 g), and extracted via PHWE (35% EtOH/H2O). This 
provided a hot extract (200 mL) that was cooled immediately 
in an ice bath. This process was repeated a further three times 
to provide a combined extract (800 mL). The extract was 
concentrated under reduced pressure (35°C) to remove 
EtOH and extracted with EtOAc (150 mL and 2 × 100 mL). 
The combined organic phase was dried (MgSO4), filtered, and 
concentrated under reduced pressure to provide extract A 
(409 mg). The remaining aqueous phase was concentrated 
under reduced pressure (50°C) to yield a dark brown extract 
B (6 g). Extract A. Extract A (400 mg) was redissolved in 
MeOH and EtOAc, adsorbed onto silica/Celite® (1:1 mixture 
by mass) and subjected to flash column chromatography 
{silica; hexanes (100 mL), 20% EtOAc/hexanes (200 mL), 40% 
EtOAc/hexanes (100 mL), 60% EtOAc/hexanes (100 mL), 80% 
EtOAc/hexanes (100 mL), EtOAc (50 mL), 10% MeOH/EtOAc 
(100 mL) and MeOH/EtOAc (100 mL)} that provided compound 
45 (8.9 mg, 0.3% w/w) as a pale-green solid. 

Blechnic acid (45) (CAS# 146805-53-0).[113] Pale- 
green solid. [α] –23.2° (c 0.0345, MeOH), lit. [α] –28° 
(c = 1.0, MeOH).[65] 1H NMR (600 MHz, CD3OD) δ 7.47 
(d, J = 15.9 Hz; H-7′), 7.03 (d, J = 8.5 Hz; H-6′), 6.86 
(d, J = 2.0 Hz; H-2), 6.74 (dd, J = 8.2, 1.9 Hz; H-6), 6.71 
(d, J = 8.4 Hz; H-5), 6.65 (d, J = 8.2 Hz; H-5′), 6.16 
(d, J = 15.9 Hz; H-8′), 5.83 (d, J = 9.3 Hz; H-7), 4.50 (d, 
J = 9.3 Hz; H-8) ppm. 13C NMR (150 MHz, CD3OD) δ 173.6 
(C-9), 170.6 (C-9′), 149.6 (C-3′), 146.5 (C-4), 146.0 (C-3), 

145.1 (C-4′), 143.3 (C-7′), 129.3 (C-1), 129.1 (C-2′), 124.5 
(C-1′), 122.6 (C-6′), 119.7 (C-6), 118.0 (C-5′), 117.8 (C-8′), 
115.9 (C-5), 115.1 (C-2), 88.4 (C-7), 55.3 (C-8) ppm. 
HRESIMS m/z calcd for C18H14O8Na [M + Na]+ 381.0586; 
found 381.0581. 

PHWE Lecanopteris pustulata subsp. pustulata 
L. pustulata subsp. pustulata dried leaflets (30 g) were 

finely ground using a spice grinder, mixed with sand 
(~7 g), and extracted via PHWE (35% EtOH/H2O). This 
provided a hot extract (200 mL) that was cooled immedi
ately in an ice bath. This process was repeated a further two 
times to provide a combined extract (600 mL) and extracted 
with EtOAc (150 mL and 2 × 100 mL). The combined 
organic phase was dried (MgSO4), filtered, and concentrated 
under reduced pressure to provide extract A (154 mg). The 
remaining aqueous phase was concentrated under reduced 
pressure (50°C) to yield a dark brown extract B (5.6 g). 
Extract A. Extract A (118 mg) was redissolved in MeOH, 
adsorbed onto silica/Celite® (1:1 mixture by mass) and 
subjected to flash column chromatography {silica; hexanes 
(30 mL), 30% EtOAc/hexanes (50 mL), 60% EtOAc/hexanes 
(100 mL), 80% EtOAc/hexanes (50 mL), EtOAc (50 mL), 
20% MeOH/EtOAc (50 mL) and 50% MeOH/EtOAc 
(25 mL)}. Following TLC and 1H NMR spectroscopic analysis, 
the resulting fractions were combined to afford six larger 
fractions, F.1–6. Fractions F.2 (19.5 mg) was redissolved in 
CH2Cl2 and MeOH, adsorbed onto silica/Celite® (1:1 mixture 
by mass) and subjected to flash column chromatography 
{silica; CH2Cl2 (25 mL), 5% MeOH/CH2Cl2 (25 mL) and 
20% MeOH/CH2Cl2 (25 mL)}. Following TLC analysis, the 
resulting fractions were combined to afford three fractions 
F.1–3; and F.2 provided compound 42 (12 mg, 0.04% w/w). 
Extract B. Extract B (5.6 g) was redissolved in MeOH and 
water, adsorbed onto silica/Celite® (1:1 mixture by mass) 
and subjected to flash chromatography {silica; EtOAc 
(200 mL), 10% MeOH/EtOAc (200 mL), 20% MeOH/EtOAc 
(200 mL) and 30% MeOH/EtOAc (200 mL)} that provided 
five fractions, F.1–5. Fraction F.1 (127 mg) was redissolved 
in MeOH and CH2Cl2, adsorbed onto silica/Celite® (1:1 mix
ture by mass) and subjected to flash column chromatography 
{silica; CH2Cl2 (50 mL), 5% MeOH/CH2Cl2 (100 mL), 10% 
MeOH/CH2Cl2 (50 mL), 30% MeOH/CH2Cl2 (100 mL) and 
MeOH (30 mL)} that provided compound 46 (4.8 mg, 
0.016% w/w) as an off-white solid. 

(p-Hydroxybenzyl)malonic acid (46).[70] Off-white solid.  
1H NMR (600 MHz, acetone-d6) δ 7.05 (2H, d, J = 8.3 Hz; 
H-2′,6′), 6.68 (2H, d, J = 8.3 Hz; H-3′,5′), 3.53 (1H, t, 
J = 7.6 Hz; H-2), 3.06 (2H, d, J = 7.6 Hz; H-3); 1H NMR 
(600 MHz, DMSO-d6) δ 6.99 (2H, d, J = 8.4 Hz; H-2′,6′), 
6.63 (2H, d, J = 8.4 Hz; H-3′,5′), 3.39 (1H, m, H-2), 2.92 
(2H, d, J = 7.5 Hz; H-3) ppm. 13C NMR (150 MHz, acetone- 
d6) δ 172.9 (C-1), 157.1 (C-4′), 130.9 (C-2′,6′), 130.9 (C-1′), 
116.2 (C-3′,5′), 55.4 (C-2), 35.2 (C-3); 13C NMR (150 MHz, 
DMSO-d6) δ 170.7 (C-1), 155.7 (C-4′), 129.6 (C-2′,6′), 
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128.7(C-1′), 114.9 (C-3′,5′), 53.5 (C-2), 33.5 (C-3) ppm. 
HRESIMS m/z calcd for C10H10O5Na [M + Na]+ 233.0426; 
found 233.0423. 

PHWE of Lomaria nuda 
L. nuda fronds (30 g) were finely ground using a spice 

grinder, mixed with sand (~6 g), and extracted via PHWE 
(35% EtOH/H2O). This provided a hot extract (200 mL) that 
was cooled immediately in an ice bath. This process was 
repeated a further two times to provide a combined extract 
(600 mL). The extract was concentrated under reduced 
pressure (35°C) to remove EtOH and extracted with EtOAc 
(150 mL and 2 × 100 mL). The combined organic phase was 
dried (MgSO4), filtered, and concentrated under reduced 
pressure to provide extract A (254 mg). The remaining aque
ous phase was concentrated under reduced pressure (50°C) 
to yield a dark brown extract B (5 g). Extract A. Extract A 
(254 mg) was redissolved in MeOH, adsorbed onto silica/ 
Celite® (1:1 mixture by mass) and subjected to automated 
flash chromatography {silica cartridge (4 g); 0–40% 
MeOH/EtOAc for 17 min}. Following TLC and 1H NMR 
spectroscopic analysis, the resulting fractions were combined 
into seven large fractions, F.1–7. Fraction F.3 (14.5 mg) 
was redissolved in MeOH, adsorbed onto silica/Celite® (1:1 
mixture by mass) and subjected to flash column chromato
graphy {silica; CH2Cl2 (50 mL), 5% MeOH/CH2Cl2 (50 mL), 
10% MeOH/CH2Cl2 (50 mL), 20% MeOH/CH2Cl2 (50 mL) 
and MeOH (20 mL)} which provided compound 47 
(2.5 mg, 0.01% w/w) as a yellow solid and compound 48 
(5 mg, 0.016% w/w) as a yellow solid. 

Quercetin-3-O-(6′-O-acetyl)glucoside (47) (CAS# 54542- 
51-7).[114] Yellow solid. 1H NMR (600 MHz, CD3OD) δ 7.81 
(1H, d, J = 2.2 Hz; H-6′), 7.63 (1H, dd, J = 8.5 and 2.2 Hz; 
H-5′), 6.88 (1H, d, J = 8.5 Hz; H-2′), 6.44 (1H, d, 
J = 2.0 Hz; H-8), 6.23 (1H, d, J = 2.0 Hz; H-6), 5.08 (1H, 
d, J = 7.9 Hz; H-1″), 4.18 (1H, dd, J = 11.4 and 7.8 Hz; 
H-6a″), 4.07 (1H, dd, J = 11.4 and 4.5 Hz; H-6b″), 3.83 
(1H, dd, J = 9.6 and 7.4 Hz; H-2″), 3.80 (1H, d, 
J = 3.3 Hz; H-3″), 3.70 (1H, dd, J = 7.7 and 4.6 Hz; H-5″), 
3.58 (1H, dd, J = 9.4 and 3.1 Hz; H-4″), 1.83 (3H, s; 2‴- 
COCH3) ppm. 13C NMR (150 MHz, CD3OD) δ 179.4 (C-4), 
172.5 (1‴-CO), 167.3 (C-7), 162.9 (C-5), 158.6 (C-9), 157.8 
(C-2), 150.0 (C-4′), 145.8 (C-3′), 135.7 (C-3), 123.1 (C-6′), 
122.8 (C-1′), 117.6 (C-5′), 116.0 (C-2′), 105.8 (C-1″), 105.1 
(C-10), 100.4 (C-6), 95.1 (C-8), 74.9 (C-3″), 74.5 (C-5″), 
72.9 (C-2″), 70.2 (C-4″), 64.5 (C-6″), 20.4 (2‴-COCH3) ppm. 

Quercitrin (48) (CAS# 522-12-3).[115] Yellow solid. 1H 
NMR (600 MHz, CD3OD) δ 7.33 (1H, d, J = 2.1 Hz; H-2′), 
7.30 (1H, dd, J = 8.3 and 2.1 Hz; H-6′), 6.91 (1H, d, 
J = 8.3 Hz; H-5′), 6.34 (1H, d, J = 2.1 Hz; H-6), 6.18 (1H, 
d, J = 2.1 Hz; H-8), 5.35 (1H, s; H-1″), 4.22 (1H, m; H-2″), 
3.75 (1H, m; H-3″), 3.42 (1H, m; H-5″), 3.35 (1H, m; H-4″), 
0.95 (3H, d, J = 6.2 Hz; 6″-CH3) ppm. 13C NMR (150 MHz, 
CD3OD) δ 179.5 (C-4), 167.3 (C-7), 163.1 (C-5), 159.1 (C-2), 
158.6 (C-9), 149.9 (C-4′), 146.5 (C-3′), 136.1 (C-3), 122.9 

(C-6′), 122.8 (C-1′), 116.9 (C-5′), 116.4 (C-2′), 105.5 (C-10), 
103.5 (C-1″), 100.3 (C-6), 95.0 (C-8), 73.3 (C-4″), 72.1 (C-3″), 
72.0 (C-5″), 71.9 (C-2′), 17.6 (6′-CH3) ppm. 

PHWE of Parablechnum wattsii 
P. wattsii dried leaf material (30 g) was finely ground 

using a spice grinder, mixed with sand (~6 g), and extracted 
via PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated further two times to provide a com
bined extract (600 mL). The extract was concentrated under 
reduced pressure (35°C) to remove EtOH and extracted with 
EtOAc (150 mL and 2 × 120 mL). The combined organic 
phase was dried (MgSO4), filtered, and concentrated under 
reduced pressure to provide extract A (523 mg). The remain
ing aqueous phase was concentrated under reduced pressure 
(50°C) to yield a dark-brown extract B (7 g). Extract 
A. Extract A (523 mg) was redissolved in MeOH, adsorbed 
onto silica and subjected to automated flash chromato
graphy {silica cartridge (12 g); 0–100% EtOAc/hexanes 
and 0–40% MeOH/CH2Cl2 for 13 min at a flow rate of 
25 mL/min} which provided compound 49 (143 mg, 0.5% 
w/w) as a dark-brown solid. Approximately 60 mg of com
pound 49 was absorbed onto silica and further purified by 
flash column chromatography {silica, 20% MeOH/CH2Cl2 
(150 mL) then 40% MeOH/CH2Cl2 (100 mL)} which pro
vided compound 49 as a pale-yellow/-green solid (20 mg). 

5-O-Caffeoylshikimic acid (49) (CAS# 73263-62-4).[55] 

Pale-yellow/-green solid. 1H NMR (600 MHz, CD3OD) δ 7.56 
(1H, d, J = 15.9 Hz; H-7′), 7.04 (1H, d, J = 1.7 Hz; H-2′), 
6.95 (1H, dd, J = 8.2 and 1.6 Hz; H-6′), 6.83 (br s; H-2), 
6.78 (1H, d, J = 8.2 Hz; H-5′), 6.28 (1H, dd, J = 15.9 Hz; 
H-8′), 5.25 (1H, dd, J = 13.2 and 5.6 Hz; H-5), 4.40 (1H, s; 
H-3), 3.90 (1H, dd, J = 7.9 and 4.1 Hz; H-4), 2.87 (1H, dd, 
J = 18.8 and 4.9 Hz; H-6a), 2.32 (1H, dd, J = 18.4 and 
5.1 Hz; H-6b) ppm. 13C NMR (150 MHz, CD3OD) δ 170.3 
(C-7), 168.6 (C-9′), 149.6 (C-4′), 147.2 (C-7′), 146.8 (C-3′), 
138.2 (C-2), 131.1 (C-1), 127.7 (C-1′), 123.0 (C-6′), 116.5 
(C-5′), 115.2 (C-2′), 115.1 (C-8′), 71.4 (C-5), 70.1 (C-4), 
67.4 (C-3), 29.4 (C-6) ppm. HRESIMS m/z calcd for 
C16H16O8Na [M + Na]+ 359.0845; found 359.0738. 

PHWE of Gleichenia alpina 
G. alpina dried aerial parts (29 g) were finely ground 

using a spice grinder, mixed with sand (~4 g), and extracted 
via PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated further two times to provide a com
bined extract (600 mL). The extract was concentrated under 
reduced pressure (35°C) to remove EtOH and extracted with 
EtOAc (200 mL and 2 × 150 mL). The combined organic 
phase was dried (MgSO4), filtered, and concentrated under 
reduced pressure to provide extract A (646 mg). The remain
ing aqueous phase was concentrated under reduced pressure 
(50°C) to yield a dark-brown extract B (10 g). Extract A. 
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Extract A (793 mg) was adsorbed onto silica/Celite® 

(1:1 mixture by mass) and subjected to flash column chroma
tography {silica; EtOAc (300 mL), 10% MeOH/EtOAc 
(150 mL), 20% MeOH/EtOAc (150 mL), 30% MeOH/EtOAc 
(150 mL), 40% MeOH/EtOAc (150 mL) and MeOH (100 mL)}, 
to afford six fractions, F.1–6. Fraction F.3 (202 mg) was and 
adsorbed onto silica/Celite® (1:1 mixture by mass) and sub
jected to flash column chromatography {silica; CH2Cl2 
(50 mL), 10% MeOH/CH2Cl2 (50 mL), 20% MeOH/CH2Cl2 
(100 mL), 20% MeOH/CH2Cl2 (150 mL) and MeOH (50 mL)} 
which provided compound 50 (6.9 mg, 0.02% w/w) as a 
yellow solid that contained minor impurities. 

Rutin (50) (CAS# 153-18-4).[116] Yellow solid. 1H NMR 
(600 MHz, CD3OD) δ 7.67 (1H, d, J = 2.2 Hz; H-2′), 7.63 
(1H, dd, J = 8.4 and 2.2 Hz; H-6′), 6.88 (1H, d, J = 8.4 Hz; 
H-5′), 6.41 (1H, d, J = 2.1 Hz; H-8), 6.21 (1H, d, J = 2.1 Hz; 
H-6), 5.11 (1H, d, J = 7.7 Hz; H-1″), 4.52 (1H, d, J = 1.4 Hz; 
H-1‴), 3.80 (1H, dd, J = 11.2 and 1.5 Hz; H-6a″), 3.63 (1H, 
dd, J = 3.3 and 1.6 Hz; H-2″‘), 3.54 (1H, dd, J = 9.5 and 
3.5 Hz; H-3‴), 3.38–3.49 (4H, m; H-2″,3″,5‴,6b″), 3.25–3.34 
(3H, m; H-4″,5″,4‴), 1.12 (3H, d, J = 6.2 Hz; 6‴-CH3) ppm.  
13C NMR (150 MHz, CD3OD) δ 179.4 (C-4), 166.1 (C-7), 
162.9 (C-5), 159.3 (C-2), 158.5 (9), 149.8 (C-4′), 145.8 
(3′), 135.6 (C-3), 123.5 (C-6′), 123.1 (C-1′), 117.7 (C-2′), 
116.1 (C-5′), 105.6 (C-10), 104.7 (C-1″), 102.4 (C-1‴), 99.9 
(C-6), 94.9 (C-8), 78.2 (C-3″), 77.2 (C-5″), 75.7 (C-2″), 73.9 
(C-4‴), 72.2 (C-3‴), 72.1 (C-2‴), 71.4 (C-4″), 69.7 (C-5‴), 
68.5 (C-6″), 17.9 (C-6‴) ppm. 

PHWE of Dicksonia antarctica 
D. antarctica dried leaflets (30.5 g) were finely ground 

using a spice grinder, mixed with sand (~7 g), and extracted 
via PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated a further three times to provide a com
bined extract (800 mL). The extract was concentrated under 
reduced pressure (35°C) to remove EtOH and extracted with 
EtOAc (150 mL and 2 × 100 mL). The combined organic 
phase was dried (MgSO4), filtered, and concentrated under 
reduced pressure to provide extract A (298 g). The remaining 
aqueous phase was concentrated under reduced pressure 
(50°C) to yield a dark-brown extract B (5 g). No compounds 
could be isolated by flash column chromatography. 

PHWE of Doodia australis 
D. australis dried leaflets (31 g) were finely ground using 

a spice grinder, mixed with sand (~7 g), and extracted via 
PHWE (35% EtOH/H2O). This provided a hot extract (200 mL) 
that was cooled immediately in an ice bath. This process was 
repeated a further two times to provide a combined extract 
(600 mL). The aqueous extract was extracted with EtOAc (150 
and 2 × 100 mL). The combined organic phase was dried 
(MgSO4), filtered, and concentrated under reduced pressure 
to provide extract A (617 mg). The remaining aqueous phase 
was concentrated under reduced pressure (50°C) to yield a 

dark-brown extract B (3.5 g). No compounds could be isolated 
by flash column chromatography. 

PHWE of Oceaniopteris cartilaginea 
O. cartilaginea dried leaflets (33 g) were finely ground 

using a spice grinder, mixed with sand (~8 g), and extracted 
via PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated a further two times to provide a com
bined extract (600 mL) and extracted with EtOAc (400 mL 
and 2 × 200 mL). The combined organic phase was dried 
(MgSO4), filtered, and concentrated under reduced pressure 
to provide extract A (1.5 g). The remaining aqueous phase 
was concentrated under reduced pressure (50°C) to yield a 
dark-brown extract B (~2 g). No compounds could be iso
lated by flash column chromatography. 

PHWE of Histiopteris incisa 
H. incisa dried leaflets (35 g) were finely ground using a 

spice grinder, mixed with sand (~16 g), and extracted via 
PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated a further three times to provide a 
combined extract (800 mL) and extracted with EtOAc 
(3 × 250 mL). The combined organic phase was dried 
(MgSO4), filtered, and concentrated under reduced pressure 
to provide extract A (877 mg). The remaining aqueous phase 
was concentrated under reduced pressure (50°C) to yield a 
dark-brown extract B (3 g). No compounds could be isolated 
by flash column chromatography. 

PHWE of Pteridium esculentum 
Aerial parts of P. esculentum (150 g) were finely ground 

using a spice grinder, mixed with sand (~75 g), and extracted 
via PHWE (35% EtOH/H2O). This provided a hot extract 
(200 mL) that was cooled immediately in an ice bath. This 
process was repeated a further nine times to provide a com
bined extract (2 L). The extract was concentrated under 
reduced pressure (35°C) to remove EtOH and extracted with 
EtOAc (3 × 500 mL). The combined organic phase was dried 
(MgSO4), filtered, and concentrated under reduced pressure to 
provide extract A (2.7 g). The remaining aqueous phase was 
concentrated under reduced pressure (50°C) to afford brown 
extract B (32 g). Extract A. Extract A (1.5 g) was redissolved 
in MeOH, adsorbed onto silica/Celite® (1:1 mixture by mass) 
and subjected to flash column chromatography {silica; CH2Cl2 
(250 mL), 10% MeOH/CH2Cl2 (250 mL), 20% MeOH/CH2Cl2 
(250 mL), 30% MeOH/CH2Cl2 (250 mL), 40% MeOH/CH2Cl2 
(250 mL) and MeOH (200 mL)}. Following TLC and 1H NMR 
spectroscopic analysis, the resulting fractions were combined 
to provide seven fractions, F.1–7. Fraction F.4 (150 mg) was 
redissolved in 20% MeCN/H2O solution and subjected to 
automated flash chromatography (12 g C18 cartridge; 
0–100% MeCN/H2O for 17 min with a flow rate of 28 mL/min). 
Following TLC and 1H NMR spectroscopic analysis, the 
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resulting fractions were combined to afford four fractions, 
F.1–4. Fraction F.2 (19 mg) was redissolved in MeOH/CH2Cl2 
solution and subjected to flash column chromatography 
{silica; 10% MeOH/CH2Cl2 (10 mL)} to provide compound 
41 (12 mg, 0.006% w/w) as a pale-yellow solid. The 
fraction F.4 (42 mg) was subjected to preparative TLC 
which provided compound 51 (25 mg, 0.02% w/w) as a 
yellow solid. 

Tiliroside (51) (CAS# 20316-62-5).[117,118] Yellow solid.  
1H NMR (600 MHz, CD3OD) δ 7.98 (2H, d, J = 8.8 Hz; 
H-2′,6′), 7.40 (1H, d, J = 15.9 Hz; H-7‴), 7.30 (2H, d, 
J = 8.5 Hz; H-2‴,6‴), 6.82 (2H, d, J = 8.8 Hz; H-3′,5′), 
6.79 (2H, d, J = 8.6 Hz; H-3‴,5‴), 6.30 (1H, d, J = 1.9 Hz; 
H-8), 6.13 (1H, d, J = 2.0 Hz; H-6), 6.07 (1H, d, 
J = 15.9 Hz; H-8‴), 5.23 (1H, d, J = 7.3 Hz; H-1″), 4.31 
(1H, dd, J = 11.8 and 1.9 Hz; H-6a″), 4.20 (1H, m; H-6b″), 
3.41–3.50 (3H, m; H-2″,3″,5″), 3.31 (1H, m; H-4″) ppm. 13C 
NMR (150 MHz, CD3OD) δ 179.4 (C-4), 168.6 (9‴-CO), 
166.3 (C-7), 162.9 (C-5), 161.5 (C-4′), 161.2 (C-4‴), 159.3 
(C-2), 158.5 (C-9), 146.6 (C-7‴), 135.2 (C-3), 132.2 
(C-2′,6′), 131.2 (C-2‴,6‴), 127.1 (C-1‴), 122.7 (C-1′), 
116.8 (C-3‴,5‴), 116.1 (C-3′,5′), 114.7 (C-8‴), 105.5 
(C-10), 104.1 (C-1″), 100.1 (C-6), 94.9 (C-8), 78.0 (C-3″), 
75.7 (C-2″,5″), 71.7 (C-4″), 64.3 (C-6″) ppm. 

Supplementary material 

Supplementary material is available online. 
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