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ABSTRACT 

Stable organic radicals have an open shell structure that makes them suitable for use in a diverse 
set of applications. Specifically, it is the reversible one-electron redox behaviour that makes these 
species suitable for energy storage and in molecular electronics. Maintaining chemical stability, 
low redox potential and charge transfer capabilities, are key to the further development of these 
materials. To date, researchers have largely focused on the the preparation of new molecules 
with improved redox capabilities for use in traditional solvents. More recently exploration into 
the use of ionic liquids to stabilise charged species and reduce side reactions has shown promise. 
Computational and preliminary experimental studies have explored the impact of ionic liquids on 
radical stabilisation, and notable improvements have been observed for nitroxide-based materials 
when traditional solvents are replaced by ionic liquids. However, these gains require significant 
refinement based on the identity of the radical species and the ionic liquid. In this highlight, we 
focus on the current state of using ionic liquids as solvents to stabilise organic radicals and 
suggestions on the future direction of the field.  

Keywords: Blatter, electrochemistry, ionic liquids, nitroxide, polymer composite, radicals, 
redox active material, verdazyl. 

Introduction 

Stable and persistent organic radicals are species that are kinetically and thermo-
dynamically stable despite the molecules possessing an incomplete vacancy. The stabilisa-
tion of one or more unpaired electrons in an open shell, results in unique physicochemical 
(redox, optical and magnetic) properties.[1] Over 100 years have passed since the first 
reported persistent radical, yet these species continue to be of relevance to contemporary 
scientific research with a variety of open shell species stabilised through steric protection or 
the delocalisation of the spin density as well as non-covalent approaches (Fig. 1).[2–4] More 
than a fundamental curiosity, they are routinely used by biologists to determine the rate of 
diffusion of molecules through a membrane.[5] Researchers are focused on the production of 
new radicals,[6] exploring their fundamental structure and bonding,[7] as well as the 
development of these species into functional materials suitable for use in magnetic, electro-
nic, optoelectronic and biological applications.[8,9] Critical to the advancement of these 
molecules is the stabilisation of the unpaired electron as well as the fine-tuning of the 
structure–property relationships towards the intended application.[4] 

Life in the modern world requires access to energy at any time or place, which is made 
possible through portable power technologies. Lithium-ion batteries (LIBs) are the domi-
nant type of such technologies, due to their high cell voltages (~3.6 V), rechargeability, 
good cyclability and long lifetimes.[10] Safety and environmental concerns have driven 
the development of new electrode materials and battery systems. Organic radicals offer a 
myriad of design choices for energy storage based on their electrochemically 
active properties.[9,11–14] These molecules can serve as active electrode materials as a 
consequence of their susceptibility to both oxidation and reduction processes (Fig. 2).[15] 
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Their fast kinetics, reversible redox potentials and high 
charge and discharge rates make these species well suited 
to mobile power storage. The preparation of LIB alternatives 
based on redox-active organic and polymer composite mate-
rials is an active area of research and, to date, a variety of 
materials featuring nitroxides, nitroxyl, phenoxyl and 
hydrazyls have been prepared.[16] In examples consisting 
of a non-conducting polymer and radical pendant groups 

(Fig. 1b), the redox activity and charge transport properties 
are a result of the open shell moieties. The mechanical and 
thermal properties of the macromolecule are determined by 
the polymeric backbone. The TEMPO (2,2,6,6-tetramethyl- 
piperidin-1-yl)oxyl) based system first reported 20 years 
ago[17] has become one of the most promising electroactive 
materials based on stable organic radicals. 

The simplest organic battery involves replacing the LIB 
cathode with a radical macromolecule (cf. LIB uses LiCoO2) 
bound to glassy carbon (Fig. 1b).[11] A poly(2,2,6,6-tetra- 
methylpiperidinyloxy methacrylate) cathode was found 
to be stable, highly reversible, capable of multiple charge/dis-
charge cycles and have a potential of ~3.6 V (vs Li/Li+).[18] All- 
organic batteries represent an alternative type of cell in which 
electrochemically active polymers are employed for both the 
anode and cathode materials. These cells have potential for 
application in devices powered by thin-film batteries (Fig. 3). 
Organic cells have demonstrable performance in terms of their 
charging speed and cycling stability, although the voltage gen-
erated is relatively low (~1 V).[19,20] However, the possibility of 
lower cost and higher flexibility justify a small sacrifice in 
performance. Increased sustainability can be offered via radical 
pendant polypeptide examples.[21] 

Organic redox flow batteries are an alternative cell type, 
suited to grid based power storage. The organic radical mate-
rials have a similar design to the traditional vanadium flow 
systems with the anode and cathode materials dissolved into 
the electrolyte solution.[22,23] Redox-active monomers have 
been used directly, with organic radicals being inexpensive, 
exhibiting redox stability and the capacity to be tuned through 
functionalisation when compared to vanadium. The most 
promising candidates are bipolar, whereby a single radical 
species can be used as both the anolyte and the catholyte.[24] 

Regardless of the organic electrode material used, the 
reactivity of the radical with the electrolyte or other species 
represents a challenge to the development of these materials 
in batteries. The irreversibility of the redox reaction and poor 
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reactions of the commercially available nitroxide radical, TEMPO. 
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stability of the radical or its electrogenerated product is also a 
significant problem, and is often caused by side-reactions of 
the radical species and dissolution in the solvent.[16] It is well 
known that the reduced form of TEMPO (aminoxy anion) 
degrades via fast environmental proton transfer (Fig. 2)[25] 

and nucleophilic attack[26] with the decomposition leading to 
a loss in the reversibility. The inherent instability can be 
overcome by adding stabilising functional groups, such as 
trifluoromethyl (–CF3), to the nitroxide structure.[27,28] This 
tailored approach is not necessarily useful in preventing side- 
reactions (e.g. self degradation and degradation via reaction 
with the neutral nitroxide radical)[29] or reducing problems 
associated with dissolution of the active polymer into stan-
dard electrolytes that results in loss of battery charge.[20] In 
recent times, ionic liquid (IL) electrolytes have been studied 
as a more promising generalised approach to resolving these 
limitations (Fig. 4c). [30,31] 

ILs (Fig. 4) are a unique class of solvent well suited to 
applications in energy storage.[32,33] They differ from molec-
ular solvents as they consist entirely of ionic species (cations 
and anions) with a melting point of < 100°C.[30] ILs are 
attractive solvents for electrochemistry as the charged ions 
allow an IL to act as both the solvent and electrolyte in an 
electrochemical system.[34] ILs also possess favourable prop-
erties such as low volatility, high polarity, high thermo-
dynamic and chemical stability, wide electrochemical 
windows and structural designability.[34–36] In the context of 
organic radical-based batteries, ILs may offer a solution to 
the poor stability and electrochemical irreversibility of redox 
species observed in conventional organic solvents.[30,31,37] 

ILs may reduce or prevent the undesired dissolution of 
radical macromolecules at times observed with conventional 
solvents, as the ionic nature means that they differ substani-
tally in polarity compared to organic molecules.[37] Being 
electrochemically and thermodynamically stable over a wide 

range of redox potentials makes ILs a suitable medium for 
reversible reactions.[38] ILs remain liquid over a wide-range 
of temperatures[38] and are stable to decomposition over a 
large electrochemical window, which minimises side- 
reactions.[39] These properties can be optimised by tailoring 
the combination of IL cation and anion to allow for better 
reversibility of the dissolved redox system.[38] 

The use of ILs to stabilise organic radicals[40,41] in spin probes 
is a well-developed field,[42] however their application in elec-
trochemically active energy storage materials has received 
much less attention. Computational chemists have led recent 
interest into understanding the value of ILs for improving the 
stability and redox potential in radical composites for organic 
batteries. We aim to highlight the current state of play in this 
exciting field and the future directions of this work. 

Recent developments with radicals in ionic 
liquids 

Nitroxide radical systems 

The importance of understanding stabilisation differences 
between the neutral and charged radical species is becoming 
prevalent for decreasing the decomposition and improving 
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the cyclability of nitroxide-based batteries.[43] Recent theo-
retical studies have highlighted that the propensity of the 
aminoxy anion to undergo side reactions can be decreased 
through replacement of the aqueous media with an appro-
priate IL. [44–48] Tailoring the IL, rather than substitution of 
the nitroxide, can decrease reactivity by increasing diffusion 
rates,[44] increasing the redox potential of the nitroxide, 
4.7–5.5 eV (cf. 2.2 eV in aqueous media),[45] and improving 
reversibility in flow systems.[25] The choice of IL is crucial 
because not all ILs are capable of preventing environmental 
proton transfer. Optimisation of the cation–anion pair 
can reduce proton transfer to the aminoxy anion. ILs with 
positive Gibbs free energy values are found to preferentially 
stabilise the anionic radical compared to hydroxy-TEMPO 
(TEMPOH).[25] Specifically, interactions between TEMPO 
and imidazolium ILs are predicted to be dominated through 
electrostatics.[46] The functionalisation of TEMPO influences 
both solubility and oxidation potential.[48] However a 
general trend towards specific ILs that will improve per-
formance across the family has not yet been reported.[29] 

In addition to significant computational studies, Wylie and 
coworkers undertook an experimental investigation into the 
electrochemistry of three TEMPO analogues in ILs.[29] Specific 
focus was on examining the degradation mechanisms known to 
impact on the aminoxy anion, with the 4-cyano-substituted 
TEMPO found to exhibit the greatest stability in the reduced 
form. It should be noted that the constitution of the IL requires 
optimisation depending on the exact TEMPO analogue. 

Related nitroxide alternatives have also been studied, 
including aqueous-based catholytes such as a nitroxide radical 
functionalised with an imidazolium cation for aqueous redox 
flow batteries.[49] Cathodes based on polymeric ILs with 
redox-active pendants have also shown promise.[50] Half 
cells based on the polyvinylimidazolium backbone bearing 
TEMPO groups exhibited improved performance in terms 
of charge capacity and current density.[51] Heterogenous 
systems in which the nitroxide radical is dissolved into ILs 
have been shown to influence localisation of the radical 
molecule compared to traditional solvents.[52] 

Alternative radical systems 

The nature of the radical species is an often overlooked but 
essential component in the development of radical composite 
materials. The majority of contemporary examples feature 
nitroxide-based radicals, which is in part due to the ease with 
which these species can be prepared from commercial mate-
rials.[6] However, stable nitroxide radicals possess notable 
deficiencies. Specifically, TEMPO has a strong localisation of 
charge, which can limit charge transfer and reduce electronic 
conductivity in the radical polymer system.[53] Alternative 
open shell species (Fig. 5) with a high degree of delocalisation 
could overcome the prevalence of mismatched intermolecular 
conformations and their use in a conducting polymer system 
may alleviate and improve this deficiency.[53] 

Verdazyl radicals (Fig. 5a) are one example in which the 
unpaired electron is delocalised in a π symmetry orbital that 
spans the four nitrogen atoms of the tetrazine ring. They are 
generally capable of undergoing reversible one electron oxida-
tion and reduction processes. Their redox potentials tend to 
vary based on the verdazyl type with the 6-oxo analogues 
generating larger cell voltages (~1.5 V) than the methylene 
bridge Kuhn verdazyls (~1 V).[7] The singly occupied molecu-
lar orbital (SOMO) is further influenced by functionalisation at 
N1,5. For example, an inductively withdrawing but resonance 
donating p-methoxy-phenyl group lowered the oxidation 
potential when compared to an unsubstituted phenyl ana-
logue.[7] Spectroelectrochemical methods have been used to 
investigate the impact of an extended π system at the N1,5 on 
the redox behaviour.[54] A preliminary investigation of the 
cyclic voltammetric behaviour of 1,5-dimethyl-3-phenyl-6- 
oxoverdazyl in several ILs found that the IL structure influences 
the reduction process.[34] Polymer systems with verdazyl pen-
dants have a high degree of redox tunability and have been 
synthesised via oxidation of a polymethacrylate bearing tetra-
zine[55] and post-polymerisation via copper-assisted azide– 
alkyne cycloaddition (CuAAC) reactions.[56] In Blatter (benzo 
[e][1,2,4]triazinyl) radicals, the spin distribution of the SOMO 
largely resides across the triazine ring, with some smaller 
elements found in the neighbouring aryl group (Fig. 5b).[57] 

Functionalisation of the phenyl group at N1 has been shown to 
impact the redox potential of the species, as well as functiona-
lisation at C3 or C6 and C7. An electroactive polymer based on 
Blatter’s radicals has been made via CuAAC.[58] Only basic 
electrochemical studies of Blatter radicals and polymers have 
so far been undertaken.[59] This delocalised system has 
been shown to undergo reversible one electron oxidation 
(10π cation) and reduction (12π anion) processes with a 
narrow cell potential.[60,61] Detailed structural relation studies 
have yet to be undertaken for this radical species. 

Conclusions 

The development of stable organic radicals for energy stor-
age continues to remain a highly topical field. Increasing the 
energy density and preventing side reactions that result in 
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decomposition are key challenges. Using ILs to overcome 
these deficiencies is an established concept, with substantial 
work on nitroxide-based radicals already reported. Renewed 
contemporary interest in this area has been driven by com-
putational research. Overcoming irreversibility/quenching 
of the redox process is essential and, promisingly, ILs are 
predicted to significantly stabilise the reduction process 
compared to traditional solvents. However, stabilisation of 
each nitroxide analogue with an appropriate IL appears to 
require considerable refinement. Significant work is required 
for the advancement of this field and to mitigate common 
failings. The real possibility in this field arguably lies in the 
employment of materials based on under-utilised stable 
organic radicals that possess delocalised spin density. 
Although significant steps have been taken to understand the 
fundamentals of how ILs can be used to help mitigate some of 
the common failings, there is still much work needed to under-
stand which combinations of IL cations and anions can best 
stabilise the radicals, their electrogenerated products, and 
maximise the physical properties for use in batteries. 
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