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Why does the synthesis of N-phenylbenzamide from 
benzenesulfinate and phenylisocyanate via the palladium- 
mediated Extrusion–Insertion pathway not work? 
A mechanistic exploration 
Yang YangA, Allan J. CantyB and Richard A. J. O’HairA,*

ABSTRACT 

The gas-phase extrusion–insertion (ExIn) reactions of the palladium complexes [(phen)nPd 
(O2SC6H5)]

+ (phen = 1,10-phenanthroline, n = 1 or 2), were investigated in the gas phase by multi-
stage mass spectrometry (MSn) experiments consisting of electrospray ionisation and a linear ion 
trap combined with density functional theory (DFT) calculations. Desulfination of palladium sulfinate 
cations under collision-induced dissociation (CID) generates the organopalladium intermediates 
[(phen)nPd(C6H5)]

+. Of these two organometallic cations, only [(phen)Pd(C6H5)]
+ reacts with 

phenyl isocyanate via insertion to yield [(phen)Pd(NPhC(O)C6H5)]
+. The formation of a coordinated 

amidate anion is supported by DFT calculations. In exploring this reactivity in the solution phase, we 
found that heating a mixture of benzenesulfinic acid, phenylisocyanate and palladium trifluoroacetate 
under a range of different conditions (ligand free versus with ligand, different solvents, addition of 
acid or base) failed to lead to the formation N-phenyl-benzamide in all cases. Instead, biphenyl was 
formed and could be isolated in a yield of 46%. DFT calculations using a solvent continuum reveal 
that the barrier associated with the insertion reaction lies above the competing sequential reactions 
of desulfination of a second phenyl sulfinate followed by reductive elimination of biphenyl.  

Keywords: biaryl coupling, desulfination, DFT calculations, extrusion, insertion, mass 
spectrometry, palladium mediated reactions, reaction mechanisms. 

Introduction 

There has been considerable interest in developing transition metal catalysed reactions for 
organic synthesis that avoid a transmetalation step requiring the use of stoichiometric and 
often toxic organometallic/organometalloid reagents.[1] Thus alternative reagents that allow 
for formation of the key organotransition metal intermediate have been sought. Two key 
classes of alternative reagents have emerged as front runners: carboxylic acids, which undergo 
metal-catalysed decarboxylation reactions,[2–9] and sulfinic acids or their salts, which undergo 
related desulfination reactions.[10–13] Based on our gas-phase studies over the past two 
decades, where we have examined a wide range of metal-catalysed decarboxylation 
reactions[14–22] and some metal-catalysed desulfination reactions,[23,24] recent efforts have 
focussed on combining gas-phase (Scheme 1a) and solution-phase mechanistic studies 
coupled with DFT calculations to develop a new class of reactions for the synthesis of amides, 
thioamides, amidines and alkenes. These studies involve palladium-mediated/catalysed extru-
sion of CO2 to form an organopalladium intermediate followed by insertion of an appropriate 
(hetero)cumulene (Scheme 1b).[25–28] Given that these synthetic methods were limited to the 
use of 2,6-dimethoxybenzoic acid as a substrate, we recently explored the use of silver 
carbonate for the synthesis of N-phenyl-benzamide starting from benzoic acid and phenyl 
isocyanate.[29] While the desired ExIn mechanism operates in the gas-phase (Scheme 1c, Eqns 
1, 2), a different base-catalysed condensation mechanism not requiring silver operates in 
solution. Given that phenylsulfinic acid has been shown to readily undergo desulfination by 
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palladium complexes in both the gas-phase[24] and in synthetic 
protocols,[30,31] here we demonstrate that while the desired 
palladium-mediated ExIn mechanism operates in the gas- 
phase (Scheme 1c, Eqns 1, 2), a palladium-mediated biaryl 
coupling side reaction dominates in solution.[32–35] 

Results and discussion 

Gas-phase formation of [(phen)nPd(C6H5)]+ via 
desulfination reactions and their reactions with 
phenyl isocyanate 

Electrospray ionisation (ESI) of a methanolic solution of 
1,10-phenanthroline, palladium trifluoroacetate and benzoic 

acid gave rise to the cationic complexes, [(phen)nPd 
(O2SC6H5)]+. As noted previously, these complexes 
undergo desulfination under collision-induced dissociation 
(CID) conditions to form [(phen)nPd(C6H5)]+, as illustrated 
for [(phen)2Pd(O2SC6H5)]+ in Fig. 1a, Eqn 3. Another 
alternative route to prepare [(phen)Pd(C6H5)]+ in the gas 
phase is via ligand loss from [(phen)nPd(C6H5)]+ (Fig. 1b,  
Eqn 4). While [(phen)2Pd(C6H5)]+ was found to be unreac-
tive towards phenylisocyanate in the gas phase (Fig. 1c), 
[(phen)Pd(C6H5)]+ undergoes an ion–molecule reaction 
(IMR) with phenylisocyanate to yield a product ion at 
m/z 482 (Fig. 1d, Eqn 5), a reaction previously observed 
for [(phen)Pd(C6H5)]+ formed via decarboxylation instead. 
The resultant [(phen)Pd(NPhC(O)C6H5)]+ (m/z 482) frag-
ments undergo both deinsertion (Eqn 6) and loss of benzene 
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Scheme 1. Mechanism-based approaches 
that provide the guidance to develop new syn-
thetic methods: (a) gas-phase Pd-mediated 
extrusion–insertion (ExIn) reactions, (b) one- 
pot approaches to synthesise thioamides, ami-
dines and amides from carboxylic acids and 
(c) gas-phase investigation of M(phen)- 
mediated ExIn for amide synthesis where 
M = Ag[ 29] or Pd (this work). The extrusion 
reaction is shown in Eqn 1 while the insertion 
reaction is given in Eqn 2.   
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Fig. 1. Multistage mass spectra (MSn) of 
uni- and bi-molecular reactions associated 
with key steps of the ExIn reaction: (a) MS2 

CID experiment showing the extrusion of 
SO2 from [(phen)2Pd(O2SPh)]+ (m/z 670, 
with normalised collision energy 
(NCE) = 17,  Eqn 3); (b) MS3 CID experi-
ment showing the loss of a phen ligand 
from [(phen)2Pd(Ph)]+ (m/z 543, 
NCE = 22,  Eqn 4); (c) MS3 IMR experiment 
between the organometallic cation 
[(phen)2Pd(Ph)]+ (m/z 543) and phenyl iso-
cyanate at 2000 ms activation time and 
(d) MS4 IMR experiment between the 
organometallic cation [(phen)Pd(Ph)]+ 

(m/z 363) and phenyl isocyanate at 10 ms 
activation time. The concentration of phe-
nyl isocyanate is 1.22 × 1010 molecule cm−3 

inside the ion trap under the IMR. 
Asterisks are used to designate the mass- 
selected precursor ions.   
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(Eqn 7), as previously reported for the ExIn product formed 
via decarboxylation.[27] 

[(phen) Pd(O SC H )] [(phen) Pd(C H )]

+ SO
2 2 6 5

+
2 6 5

+

2 (3) 
[(phen) Pd(C H )] [(phen)Pd(C H )] + phen2 6 5

+
6 5

+

(4) 
[(phen)Pd(C H )] + PhNCO

[(phen)Pd(NPhC(O)C H )]
6 5 +

6 5
+ (5) 

[(phen)Pd(NPhC(O)C H )] [(phen)Pd(C H )]
+ PhNCO
6 5 + 6 5 +

(6) 

[(phen)Pd(NPhC(O)C H )]
[(phen)Pd(PhNCO H)] + C H

6 5 +

+
6 6 (7)   

Investigation of the palladium ExIn pathway for 
the solution-phase synthesis of amides 

Encouraged by the gas-phase studies, suggesting a 
palladium-mediated stepwise extrusion of SO2 followed by 
insertion of phenyl isocyanate could be a viable approach to 
synthesise amides, the palladium-catalysed approach was 
explored using a one-pot method under ligand free condi-
tions and in the presence of neutral ligands using different 
solvents (DMSO or NMP) and with and without additives 
(base or acid). As in our previous work, the crude reaction 

mixtures were analysed via GC-MS. No amide product was 
observed under a range of reaction conditions (all attempts 
are listed in Table 1). Instead, in all cases the dominant side 
product was the biaryl species arising from double desulfi-
nation followed by homocoupling. The formation of the 
desulfinated intermediate was detected by electrospray ioni-
sation HRMS (entry 4 in Table 1, Fig. 2), which showed the 
arylpalladium complexes coordinated with one acetonitrile 
and one 6mbpy ligand and one with two 6mbpy ligands (at 
low abundance). However, the coordination with phenyl 
isocyanate was not detected, nor was the [M + H]+ ion of 
N-phenyl-benzamide. The GC-MS data revealed that there 
was still a significant amount of unreacted phenyl iso-
cyanate while the ESI-HRMS revealed that some phenyl 
isocyanate has transformed into its urea analogue. 

The formation of biaryl products is likely due to coordi-
nation of a second phenyl sulfinate to the arylpalladium 
followed by desulfination and reductive elimination of 
biphenyl. It is worth noting that related sulfinate coordi-
nated arylpalladium intermediates have been formed via 
oxidative addition of aryl iodide into PCy3 ligated palla-
dium(0) followed by coordination with a sulfinate 
anion.[35] The resultant binuclear palladium complex has 
sulfinates as bridging ligands and could be transformed to 
a mononuclear palladium complex via the addition of 
another equivalent of the ligand PCy3 (Scheme 2a). Both 
the binuclear and mononuclear palladium complexes were 
structurally characterised via X-ray crystallography 

Table 1. Attempts for the ExIn reaction between aromatic sulfinate salt and isocyanates.        

SO2Na
+ PhN = C = O

50% Pd(TFA)2,
55% Ligand,
additive

Solvent, 110°C, 2 h

O

N
H or

A B

Entry LigandA Solvent Additive Yield A (%) Yield BB (%)   

1 bpy NMP 5 equiv. TFA 0C <1 

2 bpy NMP – 0 4 

3 6mbpy NMP 5 equiv. TFA 0 5 

4 6mbpy NMP – 0 35 

5 bpy NMP 3 equiv. K2CO3 0 13 

6 6mbpy NMP 3 equiv. K2CO3 0 26 

7 phen NMP 3 equiv. K2CO3 0 10 

8 neo NMP 3 equiv. K2CO3 0 28 

9 bpy DMSO 3 equiv. K2CO3 0 10 

10 6mbpy DMSO 3 equiv. K2CO3 0 65 

11 phen DMSO 3 equiv. K2CO3 0 12 

12 neo DMSO 3 equiv. K2CO3 0 63 (46) 

Abpy, bipyridine; 6mbpy, 6-methyl-bipyridine; phen, 1,10-phenanthroline; neo, 2,9-dimethyl-1,10-phenanthroline. 
BYields were estimated by GC-MS spectra based on the intensity of excess isocyanate present. 
C0: not observed via GC-MS.  
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(Scheme 2b, c). Unfortunately such species were not 
detected using ESI-MS as they have no net charge. 

DFT exploration of the competition between 
insertion and the alternative side reaction 
involving desulfination of a second phenyl 
sulfinate followed by reductive elimination of 
biphenyl in the condensed phase 

Having established that the gas-phase ExIn reaction occurs 
but that the biphenyl side product is formed in solution, we 
were interested in using DFT calculations to explore the 

mechanistic aspects (reaction pathways and energetics) 
associated with the biphenyl side product and to compare 
the energetics to that for the insertion of phenylisocyanate 
(Fig. 3). We first examined the relative stabilities of the 
three coordinate complex [(phen)Pd(C6H5)]+, 4, and the 
DMSO solvated complex, [(phen)Pd(C6H5)(S(O)Me2)]+, 5. 
The latter was found to be more stable and was thus used as 
the key complex to calculate the insertion versus biphenyl 
side reaction pathways. The key energy barriers for the 
insertion manifold are associated with the transition states 
for displacement of the DMSO ligand by the isocyanate 
ligand TS5–6 (17.8 kcal mol–1) and the insertion reaction 
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TS6–7 (13.4 kcal mol–1). In contrast, replacement of the 
coordinated DMSO ligand with the anionic sulfinate pro-
ceeds with a low barrier of 2.4 kcal mol–1 (TS9–10) and is a 
highly exothermic reaction to form the highly stable 
S-coordinated palladium complex, 10. Even though the desul-
fination reaction through TS10–11 has a relatively high 
energy barrier of 29.4 kcal mol–1, it is lower than the ener-
getics required for formation of 6 from 10 (33.9 kcal mol–1). 
Thus desulfination is the favoured pathway. After losing SO2, 
the homocoupling reaction of the double desulfinated palla-
dium complex, 12, leads to the formation of a biaryl coordi-
nated complex, 13, via a low energy barrier (8.9 kcal mol–1). 
The fact that both key transition states in the homocoupling 
pathway are lower in energy than the one from the insertion 
pathway supports the hypothesis regarding the failure for the 
amide synthesis in the condensed phase. 

Why do we not observe the biaryl side product in 
the ExIn reaction using 2,6-dimethoxybenzoic 
acid as a substrate? 

While we have observed the protodecarboxylation side 
reaction in our previous studies of ExIn reactions involving 
the 2,6-dimethoxybenzoic acid substrate,[25–28] we never 
observed the formation of the biaryl side product. Thus we 
were interested in establishing the energetics of the biaryl 
side reaction relative to the insertion of phenylisocyanate 

(Fig. 4). The key energy barriers for the insertion manifold 
are associated with the transition states for displacement of 
the solvent ligand by the isocyanate ligand TS5–6b 
(17.9 kcal mol–1) and the insertion reaction TS6–7b 
(10.9 kcal mol–1). In contrast, replacement of the coordi-
nated solvent ligand with the anionic carboxylate requires 
more energy (TS9–10b, 20.6 kcal mol–1 relative to 5b), while 
the decarboxylation step through TS10–11 has an energy 
barrier of 28.6 kcal mol–1. After losing CO2, the homocou-
pling reaction of the palladium complex, 13b, leads to the 
formation of a biaryl coordinated complex, 14b, via an 
energy barrier (19.3 kcal mol–1). The fact that both key 
transition states in the homocoupling pathway are higher 
in energy than those from the insertion pathway is consistent 
with the lack of biaryl formation in the experiments. 

Conclusions 

Gas-phase studies provide valuable information on elemen-
tary steps relevant to organometallic chemistry used 
in organic synthesis. Here we have shown that desulfination 
reactions can be used to form the organopalladium 
intermediates [(phen)nPd(C6H5)]+ and that in the case of 
n = 1, phenyl isocyanate inserts to yield [(phen)Pd 
(NPhC(O)C6H5)]+. A key challenge we have found in trans-
lating these gas-phase ExIn reactions to solution phase 
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protocols which produced the desired product in high yield 
is the formation of unwanted side products. Thus while 
gas-phase studies provide exquisite control in a ‘pristine 
environment’, they do not capture the rich milieux of the 
condensed phase where other reagents that are absent in 
the gas-phase can facilitate the formation of side products. 
In the case of decarboxylation of benzoates, a side reaction 
often encountered in the condensed phase is protodecarbox-
ylation in which the arylorganometallic intermediate is 
protonated by an acid to form the arene. Here we have 
encountered a different side reaction in the desulfination 
ExIn approach: biaryl formation via double desulfination 
followed by reductive elimination. This series of reactions 
cannot be observed in our gas-phase studies since the orga-
nopalladium intermediate cation [(phen)Pd(C6H5)]+ cannot 
react with a second phenylsulfinate, C6H5SO2

−. The DFT 
calculations on the solution phase competition between 
insertion of isocyanate and homocoupling via desulfination 
confirmed the experimental results. Lower energy barriers 
identified in the homocoupling reaction via double desulfi-
nation on the palladium centre account for the biaryl species 
being the dominant product in the condensed phase. 

Experimental 

Reagents 

Reagents, purchased from various commercial sources, were 
used as received. Chromatographic silica media (Davisil, 

40−63 μm), was used as the stationary phase in flash 
column chromatography. 

Preparation of samples for mass spectrometry 
experiments 

Ligated palladium cations, [(L)nPd(O2XR)]+, (n = 1 or 2, 
X = C or S) were subjected to CID to form aryl-palladium 
cations [(L)nPd(R)]+, which were then mass selected for 
subsequent ion–molecule reaction studies with phenyl iso-
cyanate. We followed the protocols outlined in previous 
work.[20,21] For instance, methanolic solutions of palla-
dium(II) salt (10 mM), carboxylic acid or sodium benzene-
sulfinate (10 mM) and 1,10-phenanthroline (10 mM) were 
mixed based on a ratio of 1:1:2 and then diluted to 10 µM in 
palladium salt. A syringe pump (flowrate of 5 μL min−1) 
was used to inject the diluted solution into a modified 
linear ion-trap mass spectrometer (Thermo Finnigan LTQ) 
via the ESI source. The modified system allows 
ion–molecule reactions between mass selected ions and 
neutral molecules such as phenylisocyanate within the lin-
ear ion trap.[36,37] All spectroscopic data were acquired 
between 20 and 100 duplicate spectra with 3–5 microscans 
in each scan. 

Source conditions used in MSn experiments 

Source settings (where AU = arbitrary units) 
The sheath gas setting was 10 AU, auxiliary gas was set to 

5 AU, the sweep gas was 0 AU, the spray voltage was 4 kV, 
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the capillary temperature was set to 250°C, the capillary 
voltage was 2 V and the tube lens voltage was set to 75 V. 

CID conditions 
The precursor ion was mass selected with a window of 

1 m/z and subjected to collisional activation via collisions 
with the helium bath gas using a 10 ms activation time. The 
normalised collision energy (NCE) was set so as to achieve a 
precursor ion depletion to 10%. 

IMR conditions 
The precursor ion was mass selected with a window of 

1 m/z and subjected to IMRs with phenylisocyanate. The 
NCE was set to 0% so as not to activate the precursor ion. 

Synthetic procedures 

General methods 
1H and 13C NMR spectra were recorded using a Jeol 

400 MHz NMR spectrometer at 298 K, and were referenced 
to the 1H shift in CDCl3 (7.24 ppm) and 13C shift in CDCl3 
(77 ppm). All the NMR spectra are reported in parts per 
million (ppm) and coupling constants (J) are reported 
in Hertz (Hz). Multiplicities are recorded as: t = triplet, 
d = doublet, s = singlet. 

High-resolution mass spectra (ESI-HRMS) were obtained 
on a Thermo Scientific Exactive Plus Orbitrap mass spec-
trometer (Thermo, Bremen, Germany) via positive ion ESI 
and were used to examine species present in reactions mix-
tures and to confirm the molecular formulas of purified 
isolated products. 

GC-MS (Agilent 7890A/5975C GC-MS) analyses were car-
ried out in an HP-5ms capillary column (Agilent Technologies, 
phenyl methyl siloxane, 30 m × 0.25 mm × 0.25 μm). To 
achieve a good separation, the time program was used by 
beginning with 5 min at 70°C, followed by a 15°C min–1 ramp 
to 300°C and then 10 min at this temperature. 

General procedure for ExIn attempts 
To a solution of palladium trifluoroacetate (0.1 mmol, 

0.5 equiv.) and bidentate ligand (0.11 mmol, 0.55 equiv.) 
in DMSO or NMP (2 mL) was added sodium benzenesulfi-
nate (0.2 mmol, 1 equiv.), phenyl isocyanate (0.4 mmol, 
2 equiv.) and additive. The mixture was heated at 110°C 
for 2 h and quenched with 1 M HCl (1 mL) and water 
(50 mL), followed by liquid–liquid extraction with diethyl 
ether (3 × 50 mL). The combined organic fractions were 
washed with water (100 mL) and brine (100 mL) and dried 
over anhydrous MgSO4. The sample was then subjected to 
analysis via GC-MS as described above. In the case of entry 
12 of Table 1, the solvent was removed, and the residue 
was purified by column chromatography to give the 
biaryl. 

1,1′-Biphenyl (B) 
1,1′-Biphenyl (B) was prepared using the general method 

(entry 12 of Table 1): yield 7 mg (46%) as white solid. 
Column chromatography (silica gel, diethyl ether/n- 
hexane: 1/10). 1H NMR (400 MHz, CDCl3): δ 7. 59 
(d, J = 6.9 Hz, 4H), 7.44 (t, J = 7.3 Hz, 4H), 7.34 
(d, J = 7.5 Hz, 2H). 13C NMR (400 MHz, CDCl3): δ141.34, 
128.84, 127.34, 127.26. GC-MS (EI): m/z [M]+ calcd. for 
C12H10 154.1, found 154.1. 

Molecular modelling 

The Gaussian 16 suite of programs was used to fully opti-
mise all reactants, intermediates, transition states and prod-
ucts at the M06 level of density functional theory 
(DFT).[38,39] The effective-core potential of Hay and Wadt 
with a double-ξ valence basis set (LANL2DZ) was used to 
describe Pd[40,41] and the 6-31G(d) basis set was chosen for 
the other atoms.[42] In addition, a polarisation function 
(ξf = 1.472) was solely added for Pd.[43,44] BS1 was used 
to designate this combination of basis sets. In order to 
account for the solvation effects (DMSO in Fig. 3 and DMA 
in Fig. 4) on the optimised structures the CPCM model was 
used.[45] Frequency calculations were carried out at the 
same level of theory as those for the structural optimisation. 
The Berny algorithm was used to locate each of the transi-
tion structures. Intrinsic reaction coordinate (IRC) calcula-
tions were used to confirm the connectivity between 
structures of transition states and minima.[46,47] 

Single-point energy calculations were carried out to fur-
ther refine the energies. Thus the energies of the structures 
obtained from the M06/BS1 calculations were recalculated 
with a larger basis set (BS2) at the B3LYP-D3BJ or CAM- 
B3LYP-D3BJ level of theory.[48–51] BS2 utilises def2-TZVP11 
for all atoms along with the effective core potential includ-
ing scalar relativistic effects for Pd.[52] The solvation effect 
of DMSO and DMA were also considered in the single-point 
calculations using the CPCM model. Relative enthalpy 
(ΔH) and Gibbs energies (ΔG) at the BS2 level of theory 
were calculated using the correction values calculated from 
M06/BS1. Based on the method reported by Okuno, extra 
corrections for entropy calculations were considered in the 
solvent system.[53] When DMSO or DMA participate in the 
equilibrium of a certain transformation step, an additional 
correction was considered based on the concentration of the 
DMSO or DMA using the method proposed by Keith and 
Carter (Eqn 6 of their paper was used).[54] Unless otherwise 
stated, all the enthalpy and Gibbs free energies were calcu-
lated and corrected from the B3LYP-D3BJ/BS2//M06/BS1 
level of theory. 

Supplementary material 

Supplementary material is available online. 
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