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An autoantigen profile from Jurkat T-Lymphoblasts provides a 
molecular guide for investigating autoimmune sequelae of 
COVID-19 
Julia Y. WangA,* , Wei ZhangB, Michael W. RoehrlA, Victor B. RoehrlA and Michael H. RoehrlC,D,*

ABSTRACT 

In order to understand autoimmune phenomena contributing to the pathophysiology of 
COVID-19 and post-COVID syndrome, we have been profiling autoantigens (autoAgs) from 
various cell types. Although cells share numerous autoAgs, each cell type gives rise to unique 
COVID-altered autoAg candidates, which may explain the wide range of symptoms experi
enced by patients with autoimmune sequelae of SARS-CoV-2 infection. Based on the unifying 
property of affinity between autoAgs and the glycosaminoglycan dermatan sulfate (DS), this 
paper reports 140 candidate autoAgs identified from proteome extracts of human Jurkat 
T-cells, of which at least 105 (75%) are known targets of autoantibodies. Comparison with 
currently available multi-omic COVID-19 data shows that 125 (89%) DS-affinity proteins are 
altered at protein and/or RNA levels in SARS-CoV-2-infected cells or patients, with at least 94 
being known autoAgs in a wide spectrum of autoimmune diseases and cancer. Protein 
alterations by ubiquitination and phosphorylation during the viral infection are major contrib
utors of autoAgs. The autoAg protein network is significantly associated with cellular response 
to stress, apoptosis, RNA metabolism, mRNA processing and translation, protein folding and 
processing, chromosome organization, cell cycle, and muscle contraction. The autoAgs include 
clusters of histones, CCT/TriC chaperonin, DNA replication licensing factors, proteasome 
and ribosome proteins, heat shock proteins, serine/arginine-rich splicing factors, 14-3-3 
proteins, and cytoskeletal proteins. AutoAgs, such as LCP1 and NACA, that are altered in 
the T cells of COVID patients may provide insight into T-cell responses to viral infection and 
merit further study. The autoantigen-ome from this study contributes to a comprehensive 
molecular map for investigating acute, subacute, and chronic autoimmune disorders caused by 
SARS-CoV-2.  

Keywords: autoantibodies, autoantigens, autoimmunity, COVID-19, long COVID, dermatan 
sulfate, SARS-Cov-2, T cell immunity. 

Introduction 

The COVID-19 pandemic has been devastating. After initial recovery from acute SARS- 
CoV-2 infection, many people continue to suffer from lingering health problems 
(so called ‘long COVID’ or post-COVID syndrome), such as fatigue, shortness of breath, 
joint pain, chest pain, muscle pain, loss of smell or taste, and other neurological 
problems. Although the underlying causes are unclear, autoimmune effects are likely 
important contributors to chronic post-COVID disorders. To understand how 
SARS-CoV-2 infection may induce autoimmune responses, we are establishing a 
comprehensive COVID autoantigen (autoAg) atlas, i.e. all possible endogenous 
autoAgs that may be rendered immunogenic by the viral infection. Because different 
tissues or cells may give rise to distinct pools of autoAgs, we have been profiling 
autoAgs from multiple human tissues and cell types, including human lung fibroblast 
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HFL1 cells, human lung epithelial-like A549 cells, and 
B-lymphoblast HS-Sultan cells.[1–3] In this study, we 
report an autoantigen-ome identified from human Jurkat 
T-lymphoblast cells. 

Our autoAg discovery is based on a unifying mechanism 
of autoantigenicity that we have uncovered.[4–6] AutoAgs 
are the targets of autoantibodies (autoAbs) and T-cell auto
immune responses. Typically, self-molecules are naturally 
tolerated by the immune system and do not provoke 
autoimmune responses. However, certain self-molecules 
transform into autoAgs and become targets of autoimmune 
attacks. Thus far, hundreds of autoAgs with seemingly 
no obvious structural or functional commonality have 
been identified across various autoimmune diseases 
and cancers. Our studies have demonstrated that 
autoAgs do, in fact, share common properties. AutoAgs 
are commonly released by apoptotic cells, and we found 
that the glycosaminoglycan dermatan sulfate (DS) has 
peculiar affinity to apoptotic cells and their autoAgs.[4,6] 

DS and autoAgs can form affinity complexes and coopera
tively stimulate autoreactive B1 cells and autoantibody 
production.[4,6] Based on autoAg–DS affinity, we have 
identified several hundred autoAgs from various cells 
and tissues.[1–3,7–9] 

A variety of autoAbs have been identified in COVID-19 
patients.[10–20] Children infected with SARS-CoV-2 
who develop the rare multisystem inflammatory syn
drome show multiple autoAbs, including classical anti
nuclear antigen (ANA) autoAbs and specific autoAbs 
recognizing endothelial, gastrointestinal, or immune cell 
autoAgs.[10,11] ANA autoAbs are also frequently detected 
in COVID-19 patients with acute respiratory syndrome or 
other critical conditions,[12–14] and in COVID patients 
with no previous clinical record of autoimmune dis
eases.[15] A high frequency of cerebrospinal fluid 
autoAbs is found in COVID patients with neurological 
symptoms.[16] New-onset autoAbs were detected in a 
significant proportion of hospitalized COVID-19 patients 
and were positively correlated with immune responses to 
SARS-CoV-2 proteins.[18] Overall, an increasing number 
of observations suggest a positive correlation between 
emergence of autoAbs and an adverse clinical course of 
COVID-19. 

As revealed by our prior studies, SARS-CoV-2 infection 
may induce numerous molecular changes in the host and 
transform naturally non-antigenic self-molecules to anti
genic autoAgs.[1–3] In order to better understand the possi
ble extent of autoimmune disorders caused by SARS-CoV-2, 
we are building a comprehensive catalog of all possible 
intrinsic autoAgs across cell and tissue types related to the 
viral infection. Herein, we report a profile of autoAgs iden
tified from human Jurkat T-cells using our DS-affinity 
enrichment approach, which will provide valuable molecu
lar targets for understanding the diverse autoimmune 
sequelae of COVID-19. 

Experimental 

Jurkat T-cell culture 

The human T lymphoblast Jurkat cell line was obtained from 
the American Type Culture Collection (ATCC, Manassas, VA, 
USA) and cultured in complete RPMI-1640 medium. Short 
tandem repeat DNA identity was confirmed, and mycoplasma 
testing was negative. The growth medium was supplemented 
with 10% fetal bovine serum and a penicillin– 
streptomycin–glutamine mixture (Thermo Fisher). The cells 
were grown at 37°C in a CO2 incubator. 

Protein extraction 

Protein extraction was performed as previously described.[5] 

In brief, Jurkat cells were lysed with 50 mM phosphate 
buffer (pH 7.4) containing the Roche Complete Mini prote
ase inhibitor cocktail, and then homogenized on ice with a 
microprobe sonicator until the turbid mixture turned nearly 
clear with no visible cells left. The homogenate was centri
fuged at 10 000g at 4°C for 20 min, and the total protein 
extract in the supernatant was collected. Protein concentra
tion was measured by absorbance at 280 nm using a 
NanoDrop UV-Vis spectrometer (Thermo Fisher). 

DS-Sepharose resin preparation 

The DS-affinity resins were synthesized as previously 
described.[5,7] In brief, 20 mL of EAH Sepharose 4B resins 
(GE Healthcare Life Sciences) were washed with distilled 
water three times and mixed with 100 mg of DS (Sigma- 
Aldrich) in 10 mL of 0.1 M 2-(N-morpholino)ethanesulfonic 
acid (MES) buffer, pH 5.0. About 100 mg of N-(3- 
dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 
(Sigma-Aldrich) powder was added, and another 100 mg 
was added after 8 h of reaction. The reaction proceeded by 
mixing on a rocker at 25°C for 16 h. The coupled resins were 
washed with water and equilibrated with 0.5 M NaCl in 
0.1 M acetate (pH 5.0) and 0.5 M NaCl in 0.1 M Tris 
(pH 8.0). 

DS-affinity fractionation 

The total proteomes extracted from Jurkat cells were frac
tionated in a DS-Sepharose column.[5] About 40 mg of pro
teins in 40 mL of 10 mM phosphate buffer (pH 7.4; buffer A) 
was loaded onto the DS-affinity column at a rate of 1 mL/ 
min. Unbound and weakly bound proteins were removed 
with 60 mL of buffer A and then 40 mL of 0.2 M NaCl in 
buffer A. The remaining bound proteins were eluted in step 
gradients of 40 mL each of 0.4, 0.6, and 1.0 M NaCl in buffer 
A. Fractions were desalted and concentrated with 5 kDa cut- 
off Vivaspin centrifugal filters (Sartorius). Fractionated pro
teins were separated in 1-D SDS-PAGE in 4–12% Bis-Tris 
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gels, and each gel lane was divided into two or three sec
tions for sequencing. 

Mass spectrometry sequencing 

Protein sequencing was performed at the Taplin Biological 
Mass Spectrometry Facility at Harvard Medical School. 
Proteins in gels were digested with sequencing-grade trypsin 
(Promega) at 4°C for 45 min. Tryptic peptides were sepa
rated in a nanoscale C18 HPLC capillary column and ana
lyzed in an LTQ linear ion-trap mass spectrometer (Thermo 
Fisher). Peptide sequences and protein identities were 
assigned by matching the measured fragmentation pattern 
with proteins or translated nucleotide databases using 
Sequest. All data were manually inspected. Proteins with 
≥ 2 peptide matches were considered positively identified. 

COVID data comparison 

DS-affinity proteins were compared with currently available 
COVID-19 multi-omic data compiled in the Coronascape 
database (as of 2 February 2021).[21–42] These data have 
been obtained with proteomics, phosphoproteomics, inter
actome, ubiquitome, and RNA-seq techniques. Up- and 
down-regulated proteins or gene transcripts were identified 
by comparing cells infected vs uninfected by SARS-CoV-2 or 
COVID-19 patients vs healthy controls. Similarity searches 
were conducted to identify DS-affinity proteins that are up- 
and/or down-regulated in viral infection at any omic level. 

Protein network analysis 

Protein–protein interactions were analyzed by STRING.[43] 

Interactions included both direct physical interaction and 
indirect functional associations, which were derived from 
genomic context predictions, high-throughput lab experi
ments, co-expression, automated text mining, and previous 
knowledge in databases. Each interaction was annotated 
with a confidence score from 0 to 1, with 1 being the high
est, indicating the likelihood of an interaction to be true. 
Pathways and processes enrichment were analyzed with 
Metascape,[21] which utilizes various ontology sources 
such as KEGG Pathway, GO Biological Process, Reactome 
Gene Sets, Canonical Pathways, CORUM, TRRUST, and 
DiGenBase. Terms with a P-value <0.01, a minimum 
count of three, and an enrichment factor (ratio between 
the observed counts and the counts expected by chance) 
>1.5 were collected and grouped into clusters based on 
their membership similarities. The most statistically signifi
cant term within a cluster was chosen to represent the 
cluster. 

Autoantigen literature text mining 

Every DS-affinity protein identified in this study was 
searched for specific autoAbs reported in the PubMed 

literature. Search keywords included the MeSH keyword 
‘autoantibodies’, the protein name or its gene symbol, or 
alternative names and symbols. Only proteins for which 
specific autoAbs are reported in PubMed-listed journal arti
cles were considered ‘confirmed’ or ‘known’ autoAgs in this 
study. 

Results and discussion 

Autoantigen-ome of Jurkat cells identified by 
DS-affinity 

Total proteins were extracted from Jurkat T-cells and frac
tionated in a DS-Sepharose affinity column. Proteins with 
increasing DS-affinity were eluted from the column with 
increasing ionic strength of salt. Fractions eluted with 0.4, 
0.6, and 1.0 M NaCl correspond to proteins with intermedi
ate, strong, and very strong DS-affinity, respectively. Mass 
spectrometry sequencing identified a total of 140 proteins 
from these three DS-affinity fractions (Table 1). The major
ity of proteins (120/140) were eluted with 0.4 M NaCl, 31 
proteins were found in the 0.6 M NaCl elution, and 11 
proteins were identified in the 1.0 M NaCl elution. Three 
proteins were detected redundantly in all three fractions 
(HIST4H4, H2AC1, and RPLP2), 1H2BC1 was detected in 
both 0.6 and 1.0 M fractions, C1QBP was detected in both 
0.4 and 1.0 M NaCl fractions, and 13 proteins were detected 
in both 0.4 and 0.6 M fractions. 

Remarkably, among the 140 DS-affinity proteins identi
fied from Jurkat T-cells, at least 105 (75%) are known 
autoAgs, i.e. the existence of specific autoAbs against 
these proteins has been reported in the literature (see refer
ences in Table 1). These autoAb/autoAg pairs are found in a 
wide spectrum of autoimmune diseases as well as a variety 
of cancers. Although 36 of the DS-affinity proteins have not 
yet been reported as autoAgs, we suspect that most, if not 
all, are putative autoAgs awaiting serological confirmation. 
For example, six serine/arginine-rich splicing factors were 
identified by DS-affinity, but only three of them (SRSF1, 
SRSF3, and SRSF5) have thus far been individually reported 
as autoAgs (Table 1). A serine/arginine-rich repeating octa
peptide of Arg-Ser-Arg-Ser-Arg(Lys)-Glu(Asp)-Arg-Lys(Arg) 
has been found in several nuclear autoAgs such as U2AF 
35 and 65 kDa splicing factors and 70 kDa U1 snRNP,[120] 

and many other splicing factors have been reported as 
autoAgs, such as SF3B1 and SRSF2. Therefore, we suspect 
that the other three splicing factors (SRSF3B3, SRSF7, and 
SRSF8) identified by DS-affinity in this study are likely true 
autoAgs that are yet to be confirmed. 

Proteins eluted with 1.0 M NaCl possess the strongest DS- 
affinity and, strikingly, 10/11 (90.9%) are known autoAgs 
(Table 1), indicating that increasing affinity to DS increases 
the propensity of a protein to be an autoAg, consistent with 
our prior findings.[1–5,7–9] These include histones (H4, H2B 
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Table 1. DS-affinity autoantigens from Jurkat T-cells and their alterations in SARS-CoV-2 infection.           

Symbol Protein name DS-affinity SARS-CoV-2 effect Ref. 

VS S M Up Dn Interact   

ACTC1 Actin, alpha 1, skeletal muscle 2  6 u d  [ 44] 

ACTG1 Actin, cytoplasmic 2   4 u d  [ 45] 

ACTN1 Alpha-actinin-1, f-actin cross linking protein   8 u d  [ 46] 

ALDH18A1 Delta 1-pyrroline-5-carboxylate synthetase   2  d   

ANP32A Acidic leucine-rich nuclear phosphoprotein 32 family member a  9  u d   

ANP32B Acidic leucine-rich nuclear phosphoprotein 32 family member b  6   d  [ 47] 

ANXA6 Annexin a6 (chromobindin-20)   9 u d  [ 48] 

ATP5F1B ATP synthase subunit beta, mitochondrial precursor   7 u d Nsp6 [ 49] 

BZW2 Basic leucine zipper and W2 domain-containing protein 2   2   M  

C1QBP Complement component 1 q subcomponent-binding protein 2  2  d  [ 47] 

CALM1 Calmodulin-1   4  d  [ 13] 

CALM3 Calmodulin-3   2 u   [ 50] 

CALR Calreticulin precursor   11 u d  [ 51] 

CAND1 Cullin-associated nedd8-dissociated protein 1, TIP120   6     

CAPRIN1 Membrane component chromosome 11 surface marker 1   3  d   

CAPZA1 F-actin capping protein alpha-1 subunit   2  d  [ 52] 

CCT2 T-complex protein 1 subunit beta   8  d  [ 53] 

CCT3 T-complex protein 1 subunit gamma   12 u   [ 54] 

CCT4 T-complex protein 1 subunit delta (stimulator of tar rna-binding)   3 u   [ 54] 

CCT5 T-complex protein 1 subunit epsilon   7 u d  [ 53] 

CCT6A T-complex protein 1 subunit zeta   5 u d  [ 53] 

CCT7 T-complex protein 1 subunit eta   9    [ 53] 

CCT8 T-complex protein 1 subunit theta   18 u d  [ 54] 

CDC37 Hsp90 chaperone protein kinase-targeting subunit   6 u d   

DDB1 Damage-specific DNA-binding protein 1   2 u d  [ 6] 

DDX39A ATP-dependent RNA helicase ddx39   7 u d   

DDX39B Spliceosome RNA helicase bat1   2  d   

DHX15 Pre-mRNA-splicing factor ATP-dependent RNA helicase   2  d   

EEF1B2 Elongation factor 1-beta   2  d   

EEF1G Elongation factor 1-gamma   5 u d   

EIF4A1 Eukaryotic initiation factor 4A-I   14 u d   

EIF5A2 Eukaryotic translation initiation factor 5a isoform 2   2  d  [ 55] 

FASN Fatty acid synthase   5 u d  [ 56] 

HDGF Hepatoma-derived growth factor   3 u d  [ 57] 

HIST1H1A Histone h1.1, H1-1  3 2 u d  [ 58] 

HIST1H1B Histone h1.5 (histone h1a), H1-5  5 3 u d  [ 59] 

HIST1H1C Histone h1.2 (histone h1d), H1-2  3 3 u d  [ 60] 

HIST1H2AA Histone h2a type 1-a, H2AC1, H2AFR 3 2 2    [ 59] 

HIST1H2BA Histone h2b type 1-a (testis-specific histone h2b), H2BC1 5 4     [ 58] 

(Continued on next page) 
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Table 1. (Continued)          

Symbol Protein name DS-affinity SARS-CoV-2 effect Ref. 

VS S M Up Dn Interact   

HIST1H2BB Histone h2b type 1-b (h2b.f) H2BC3 2      [ 61] 

HIST3H3 Histone h3.4, H3-4   3    [ 58] 

HIST4H4 Histone h4, H4C1 5 6 8 u   [ 61] 

HMGB1 High mobility group protein 1-like 10 (hmg-1l10)   10  d  [ 57] 

HMGCS1 Hydroxymethylglutaryl-coa synthase   2 u d   

HNRNPA1 hnRNP core protein A1   2 u d  [ 62] 

HNRNPCL1 hnRNP core protein C-like 1  2     [ 63] 

HNRNPK hnRNP K   3 u   [ 64] 

HNRNPU hnRNP U (scaffold attachment factor a)   2 u d  [ 65] 

HSP90AA1 Heat shock protein hsp 90-alpha (hsp 86)  2 38 u d  [ 66] 

HSP90AB1 Heat shock protein hsp 90-beta (hsp 84) (hsp 90)   16 u d  [ 67] 

HSP90B1 Heat shock protein 90 kDa beta member 1 (grp94)   23 u d  [ 68] 

HSPA4 Heat shock 70 kDa protein 4   14 u d  [ 69] 

HSPA5 GRP78, BiP   8 u d Nsp2 Nsp4 [ 70] 

HSPD1 Hsp60 (mitochondrial matrix protein p1)   30 u d  [ 71] 

HSPH1 Heat-shock protein 105 kDa   13 u   [ 72] 

HYOU1 Hypoxia up- regulated 1, ORP150   2 u  Orf8 [ 73] 

IPO5 Importin beta-3, ranbp5   7    [ 74] 

KPNB1 Importin beta-1 subunit (nuclear factor p97)   5    [ 74] 

LCP1 Plastin-2   8 u   [ 75] 

LMNB1 Lamin-b1   2 u d  [ 76] 

LSM8 U6 snRNA-associated Sm-like protein LSm8   2     

MAPRE1 Microtubule-associated protein rp/eb family member 1   3   Orf3  

MCM2 DNA replication licensing factor mcm2   6  d  [ 77] 

MCM3 DNA replication licensing factor mcm3   7 u d  [ 77] 

MCM4 DNA replication licensing factor mcm4, CDC21   5 u d  [ 77] 

MCM5 DNA replication licensing factor mcm5, CDC46   3 u d  [ 77] 

MCM6 DNA replication licensing factor mcm6   9 u d  [ 77] 

MYL6 Myosin light polypeptide 6   2 u   [ 78] 

NACA Nascent polypeptide-associated complex subunit alpha   3 u d  [ 51] 

NASP Nuclear autoantigenic sperm protein   4 u d  [ 79] 

NCL Nucleolin  23  u d  [ 80] 

NPM1 Nucleophosmin  6 6 u d  [ 81] 

NUDT5 ADP-sugar pyrophosphatase   2  d   

P4HB Protein disulfide-isomerase precursor (thyroid hormone-binding 
protein)   

7 u d  [ 82] 

PABPC3 Polyadenylate-binding protein 3 3    d   

PCNA Proliferating cell nuclear antigen   8 u d  [ 83] 

PDIA4 Protein disulfide-isomerase a4 precursor   12 u d  [ 84] 

(Continued on next page) 
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Table 1. (Continued)          

Symbol Protein name DS-affinity SARS-CoV-2 effect Ref. 

VS S M Up Dn Interact   

PDIA6 Protein disulfide-isomerase a6 precursor   4 u d  [ 82] 

PFDN3 Prefoldin subunit 3, VBP1   3  d   

POTEKP Putative beta-actin-like protein 3, kappa actin, ACTBL3  2 2 u    

PPP1R7 Protein phosphatase 1 regulatory subunit 7   2 u    

PPP2R1A Serine/threonine-protein phosphatase 2a (pp2a) regulatory subunit A   7  d  [ 85] 

PRKCSH Glucosidase 2 subunit beta (protein kinase c substrate heavy chain)   4  d Orf3  

PRMT1 Protein arginine n-methyltransferase 1   3  d  [ 82] 

PSMA1 Proteasome subunit alpha type 1   3 u   [ 86] 

PSMA2 Proteasome subunit alpha type 2   2  d   

PSMA3 Proteasome subunit alpha type 3   2 u d  [ 87] 

PSMA5 Proteasome subunit alpha type 5   5 u   [ 88] 

PSMA7 Proteasome subunit alpha type 7   2 u d  [ 89] 

PSMA8 Proteasome subunit alpha type 7-like   2    [ 89] 

PSMB3 Proteasome subunit beta type 3   2  d  [ 87] 

PSMB4 Proteasome subunit beta type 4   3     

PSMB7 Proteasome subunit beta type 7 (subunit z)   2  d  [ 87] 

PSMC1 26s Proteasome regulatory subunit 4   2  d   

PSME3 Proteasome activator complex subunit 3   3  d  [ 90] 

PTGES3 Prostaglandin E synthase 3   2  d   

PTMA Prothymosin alpha  4  u d  [ 91] 

RBBP7 Histone-binding protein rbbp7   3 u d   

RPA3 Replication protein A 14 kDa subunit   2    [ 92] 

RPL22 60s ribosomal protein L22 (heparin-binding protein hbp15)  2   d  [ 93] 

RPL5 60s ribosomal protein L5  5   d  [ 94] 

RPL6 60s ribosomal protein L6 4   u d  [ 77] 

RPL7 60s ribosomal protein L7 3   u d  [ 93] 

RPLP0 60s acidic ribosomal protein P0 3   u d  [ 95] 

RPLP2 60s acidic ribosomal protein P2 (ny-ren-44 antigen) 2 2 2 u d  [ 96] 

RPS3A Ribosomal protein S3a  2  u d   

RPS7 Ribosomal protein S7   2 u d   

SET Protein SET  4  u d  [ 97] 

SF3B3 Splicing factor 3b subunit 3, SAP130   3 u    

SNRNP70 U1 snRNP 70 kDa  3  u d  [ 98] 

SNRPD2 Small nuclear ribonucleoprotein D2 polypeptide  3 2  d  [ 99] 

SNRPD3 Small nuclear ribonucleoprotein sm d3  2   d  [ 100] 

SRRT Arsenite-resistance protein 2   2  d   

SRSF1 Splicing factor, arginine/serine-rich 1   5 u d  [ 46] 

SRSF3 Serine/arginine-rich splicing factor 3, SFRS3   2    [ 101] 

SRSF5 Serine/arginine-rich splicing factor 5, SRP40  2  u d  [ 102] 

(Continued on next page) 
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types 1-a and 1-b, and H2A type 1-a), 60S ribosomal pro
teins (P0, P2, L6, and L7), ACTC1 (skeletal muscle actin), 
C1QBP, and PABPC3 (polyadenylate-binding protein 3). 
Histones and ribosomal P proteins are hallmark autoAgs 
used in routine clinical tests of autoimmune diseases. 
Histone autoAbs are nearly always present in drug-induced 
systemic lupus erythematosus, and ribosomal P autoAbs are 
tested for to aid in the differential diagnosis of lupus 
patients with neuropsychiatric symptoms. C1QBP has been 
repeatedly identified as a putative autoAg in several of our 
prior studies,[1,2,7,8] and was recently confirmed as an 
autoAg in the neurodegenerative disorder primary open- 
angle glaucoma.[121] Poly(A)-binding proteins bind the 
poly(A) tail of messenger RNAs and control mRNA stability 
and translation initiation. Although PABPC3 has not yet 

been reported as an autoAg, its paralog PABPC1 has been 
found to be an autoAg.[122] 

Proteins eluted with 0.6 M NaCl possess strong DS-affinity 
and 26/31 (83.9%) are known autoAgs (Table 1). Several 
well-known autoAgs are identified in this strong DS-affinity 
fraction, including six histone autoAgs, SSB (lupus La 
autoAg), XRCC6 (lupus Ku70 autoAg), three snRNP autoAgs 
(Sm D2, Sm D3, and U1 70kD). Other autoAgs identified with 
strong DS-affinity include ANP32B, nucleolin, nucleophos
min, SET, HNRNPCL1, HSP90AA1, three ribosomal proteins 
(L22, L5, and S3a), three serine/arginine-rich splicing factors, 
three tropomyosin subunits, prothymosin alpha, three tubulin 
subunits, vimentin, and T-complex protein 1 alpha. A few 
have not yet been confirmed as autoAgs, including ANP32A, 
kappa actin, and ribosomal protein 3A. 

Table 1. (Continued)          

Symbol Protein name DS-affinity SARS-CoV-2 effect Ref. 

VS S M Up Dn Interact   

SRSF7 Splicing factor, arginine/serine-rich 7 (9g8)  2  u    

SRSF8 Serine/arginine-rich splicing factor 8  2   d   

SSB Lupus La protein (Sjogren syndrome type b antigen]  3 5 u d  [ 103] 

ST13 Hsc70-interacting protein (suppression of tumorigenicity protein 13)   6 u   [ 104] 

SYNCRIP hnRNP Q (synaptotagmin-binding, cytoplasmic rna-interacting 
protein)   

3  d   

TCP1 T-complex protein 1 subunit alpha   7  d  [ 53] 

TPM1 Tropomyosin 1 alpha chain   3 u d  [ 105] 

TPM3 Tropomyosin alpha-3 chain   5 u d  [ 106] 

TPM4 Tropomyosin alpha-4 chain   5 u d  [ 107] 

TUBA1C Tubulin alpha-6 chain  2 2 u d  [ 108] 

TUBA3C Tubulin alpha-2 chain  3 10     

TUBB Beta-tubulin  2 7 u d  [ 109] 

UBA1 Ubiquitin-activating enzyme E1   2 u d  [ 110] 

VCP Transitional endoplasmic reticulum ATPase   14 u d  [ 111] 

VIM Vimentin  4 10 u d  [ 112] 

VPS35 Vacuolar protein sorting 35   2 u d  [ 113] 

XRCC5 ATP-dependent dna helicase 2 subunit 2 (lupus ku86)   8  d  [ 114] 

XRCC6 ATP-dependent dna helicase 2 subunit 1 (lupus ku70)  6 11 u d  [ 115] 

YWHAB 14-3-3 protein beta/alpha   12 u d   

YWHAE 14-3-3 protein epsilon   8 u d  [ 116] 

YWHAG 14-3-3 protein gamma   5 u   [ 116] 

YWHAH 14-3-3 protein eta   3  d  [ 117] 

YWHAQ 14-3-3 protein theta   3 u d  [ 118] 

YWHAZ 14-3-3 protein zeta/delta   3 u d  [ 119] 

Abbreviations from left to right: VS (very strong DS-affinity, eluted with 1.0 M NaCl), S (strong DS-affinity, eluted with 0.6 M NaCl), M (medium DS-affinity, eluted 
with 0.4 M NaCl), Up (up-regulated in SARS-CoV-2 infection), Dn (down-regulated in SARS-CoV-2 infection), Interact (found in the protein interactomes of listed 
SARS-CoV-2 viral proteins), Ref. (representative literature references in which autoantibodies to specific autoAgs are reported). Numbers in the ‘DS-affinity’ 
columns denote numbers of proteins identified.  
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We see evidence that the 140 candidate autoAgs identi
fied from Jurkat T-cells are not a random collection but are 
highly enriched in a few groups of proteins. Among them, 
there are 11 proteasomal proteins, eight ribosomal proteins, 
eight histones, eight T-complex protein (CCT/TriC) subu
nits, seven heat shock proteins, six splicing factors, six 
14-3-3 proteins, five DNA replication licensing factors (or 
minichromosome maintenance proteins), five DNA or RNA 
helicases, and four hnRNPs. 

Protein–protein interaction network analysis by 
STRING[43] reveals that the DS-affinity autoantigen-ome is 
highly connected (Fig. 1). There are 787 interactions at high 
confidence level (vs 284 expected; enrichment P-value 
<10−16). These DS-affinity proteins are enriched in several 

clusters and significantly associated with the cell cycle, 
protein folding, chromosome organization, RNA splicing, 
translation, and muscle contraction (Fig. 1). There are 36 
DS-affinity proteins associated with the cell cycle, particu
larly the G2/M checkpoints (26 proteins), the G2/M DNA 
damage checkpoint, and the G1/S and G2/M transitions. 

Pathway and process enrichment analyses by Zhou 
et al.[21] also reveal that proteins of the DS-affinity 
autoantigen-ome are significantly associated with cellular 
response to stress, protein folding, and protein localization 
to organelles (Fig. 2a). In addition, they are associated with 
kinase maturation complex 1, spliceosome, HSF1 activation 
(activates gene expression in response to a variety of stres
ses), protein processing in the endoplasmic reticulum, 

Fig. 1. The autoantigen-ome from Jurkat T-cells identified by DS affinity. Lines represent protein–protein interactions at high 
confidence levels. Marked proteins are associated with cell cycle (37 proteins, yellow), chromosome organization (31 proteins, 
red), RNA splicing (20 proteins, pink), translation (13 proteins, aqua), protein folding (24 proteins, green), and muscle contraction 
(nine proteins, blue).    
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VEGFA-VEGFR2 signaling (major pathway that activates 
angiogenesis), apoptosis-induced DNA fragmentation, and 
17S U2 snRNP. 

DS-affinity autoantigen-ome related to 
COVID-19 

To determine how many of the DS-affinity autoAgs identified 
from Jurkat T-cells are affected by SARS-CoV-2 infection, we 
searched for them in a multi-omic COVID database compiled 
by Coronascape.[21–41] Among the 140 DS-affinity proteins 
identified in our study, 125 (89.3%) are affected by SARS- 

CoV-2 infection, and at least 94 (of the 125; 75.2%) are 
known autoAgs (Table 1 and Supplementary Table S1). 
Among the COVID-altered DS-affinity proteins, 17 are up- 
regulated only, 35 are down-regulated only, and 71 are altered 
(up or down depending on study conditions) at protein and/or 
RNA levels in SARS-CoV-2 infected cells. The COVID database 
was assembled from different cell and patient tissue types by 
multiple research laboratories using different technologies, 
including proteomics, phosphoproteomics, ubiquitinomics, 
and bulk and single-cell RNA sequencing. 

Six DS-affinity proteins are found in the interactomes of 
SARS-CoV-2 viral proteins, i.e. these host proteins interact 

R-HSA-2262752: Cellular responses to stress

(a)

0 5 10 15

–log10(P)
2520 30

0 5 10 15

–log10(P)
2520 30

35

DS-affinity autoAgs from Jurkat T-cells

(b) COVID-affected DS-affinity autoAgs

GO:0006457: protein folding
GO:0072594: establishment of protein localization to organelle
GO:0065004: protein-DNA complex assembly
CORUM:5199: Kinase maturation complex 1
CORUM:5615: Emerin complex 52

CORUM:387: MCM complex

ko04141: Protein processing in endoplasmic reticulum
GO:0071826: ribonucleoprotein complex subunit organization

GO:0006412: translation
WP3888: VEGFA-VEGFR2 Signaling Pathway
R-HSA-445355: Smooth Muscle Contraction

R-HSA-140342: Apoptosis induced DNA fragmentation
WP2272: Pathogenic Escherichia coli infection

CORUM:6985: ProTalpha C5 complex

CORUM:2755: 17S U2 snRNP
CORUM:1335: SNW1 complex

hsa03040: Spliceosome
R-HSA-1852241: Organelle biogenesis and maintenance
R-HSA-3371511: HSF1 activation

R-HSA-8953854: Metabolism of RNA
GO:0006457: protein folding
GO:0072594: establishment of protein localization to organelle
CORUM:5199: Kinase maturation complex 1
CORUM:5611: Emerin complex 24

CORUM:387: MCM complex

GO:0071103: DNA conformation change

ko04141: Protein processing in endoplasmic reticulum

GO:0071826: ribonucleoprotein complex subunit organization

GO:0006412: translation

WP3888: VEGFA-VEGFR2 Signaling Pathway
R-HSA-445355: Smooth Muscle Contraction
R-HSA-3371556: Cellular response to heat stress

CORUM:6985: ProTalpha C5 complex
CORUM:1335: SNW1 complex
GO:0035304: regulation of protein dephosphorylation

GO:0006458: ‘de novo’ protein folding
M105: PID TELOMERASE PATHWAY

hsa03040: Spliceosome
R-HSA-1852241: Organelle biogenesis and maintenance

Fig. 2. Top 20 enriched pathways and processes among COVID-altered DS-affinity proteins. (a) 140 proteins 
identified by DS-affinity from Jurkat T-cells. (b) 125 DS-affinity proteins that are altered in SARS-CoV-2 infection. 
The x-axes show the negative decadic logarithm of the respective pathway’s enrichment P-value.    
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directly or indirectly with the viral proteins.[23,34,38] 

Specifically, HSPA5 (GRP78/BiP) interacts with Nsp2 and 
Nsp4, HYOU1 interacts with Orf8, PRKCSH and MAPRE1 
interact with Orf3, and BZW2 interacts with the viral M 
protein. HSPA5/BiP (binding immunoglobulin protein) has 
been consistently identified by DS-affinity in our previous 
studies, and we have recently reported that DS-BiP associa
tion plays important roles in regulating precursor autoreac
tive B1 cells.[6] HYOU1 (hypoxia up-regulated protein 1) 
was also found overexpressed at protein level in the urine of 
COVID-19 patients and up-regulated at mRNA level in B 
cells from four patients out of a cohort of seven hospitalized 
COVID-19 patients.[27,42] HYOU1 belongs to the heat shock 
protein 70 family, accumulates in the endoplasmic reticu
lum under hypoxic conditions, and has been shown to be up- 
regulated in tumors. PRKCSH (glucosidase 2 subunit beta) is 

an N-linked glycan processing enzyme in the endoplasmic 
reticulum, and mutations of this gene have been associated 
with autosomal dominant polycystic liver disease. MAPRE1 
(microtubule-associated protein RP/EB family member 1) 
binds the plus-end of microtubules and regulates micro
tubule cytoskeleton dynamics. BZW2 (basic leucine zipper 
and W2 domain 2) may be involved in neuronal differentia
tion and is associated with congenital hypomyelinating 
neuropathy. 

Similar to the 140 DS-affinity protein autoantigen-omes, 
the 125 COVID-altered DS-affinity proteins are most sig
nificantly associated with RNA metabolism and protein 
folding (Fig. 2b). In addition, they are associated with estab
lishment of protein localization to organelles, kinase 
maturation complex 1, emerin complex 24, DNA conforma
tion change, spliceosome, cellular response to heat stress, 

Fig. 3. DS-affinity proteins that are altered by SARS-CoV-2 infection. Lines represent protein–protein interactions at high 
confidence levels. Marked proteins are associated with chromosome organization (25 proteins, red), mRNA processing 
(17 proteins, pink), translation (13 proteins, aqua), protein processing in endoplasmic reticulum (green, 17 proteins), muscle 
contraction (nine proteins, blue), TCP-1/cpn60 chaperonin (yellow, eight proteins), and apoptosis (21 proteins, brown).    
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smooth muscle contraction, VEGFA-VESFR2 signaling path
way, prothymosin alpha C5 complex, regulation of protein 
dephosphorylation, and telomerase pathway (Fig. 2b). 
Protein–protein interaction network analysis also confirms 
that the COVID-altered DS-affinity protein network is 
strongly associated with mRNA processing, translation, 
chromosome organization, protein processing in the endo
plasmic reticulum, CCT/TriC chaperonin, and apoptosis 
(Fig. 3). 

Nine COVID-altered DS-affinity proteins are associated 
with muscle contraction, including ACTC1, CALM1, 
CALM3, MYL6, TPM1, TPM3, TPM4, SRSF1, and VIM. All 
of these proteins are known autoAgs (Table 1). CALM1 has 
recently been identified as one of the autoAgs in multisys
tem inflammatory syndrome in children from SARS-CoV-2 
infection.[11] Six 14-3-3 proteins are identified, all of which 
are autoAgs. The presence of 14-3-3 proteins in cerebrospi
nal fluid, a marker of ongoing neurodegeneration, has been 
detected in COVID-19 patients.[123] 

AutoAgs from altered phosphorylation and 
ubiquitination 

Thirty-eight of the 125 COVID-affected DS-affinity proteins 
have phosphorylation changes in SARS-CoV-2 infection 
(Fig. 4). Their molecular functions include histone binding 
(six proteins), RNA binding (10 proteins), helicase activity 
(five proteins), ATP binding (12 proteins), DNA binding 
(14 proteins), and hydrolase activity (11 proteins). These 
COVID-altered phosphoproteins are significantly associated 
with gene expression, chromosome organization, and mRNA 
metabolism. Chromosome-associated proteins are particu
larly related to DNA conformation change (XRCC6, SET, 
NPM1, HIST1H1C, HIST1H1B, RBBP7, NASP, and MCMs) 
and DNA replication (MCM2, MCM3, MCM4, NASP, RBBP7, 
and SET). mRNA-associated proteins are related to mRNA 
splicing (SRSF1, SRSF7, SRRT, HNRNPA1, HNRPNK, 
HNRNPU, and DDX39A) and RNA 3′-end processing 
(DDX39A, SRSF7, SRSF1, and SSB). In addition, nuclear 
matrix protein lamin-B1, nucleolar protein nucleolin, vacuo
lar protein sorting-associated protein VPS35, vimentin, fatty 
acid synthetase FASN, protein phosphatase 1 regulatory sub
unit PPP1R7, and HDGF (hepatoma-derived growth factor) 
are altered by phosphorylation. 

Among the 125 COVID-affected DS-affinity proteins, 50 
are altered by ubiquitination in SARS-CoV-2 infection 
(Fig. 4). These proteins are associated with apoptosis, chro
mosome organization, protein folding, translation, cell 
cycle, and cytoskeleton. Proteins related to apoptosis 
include linker histones (HIST1H1A, HIST1H1B, and 
HIST1H1C), 14-3-3 proteins (YWHAB, YWHAE, YWHAQ, 
and YWHAZ), and proteasome proteins (PSMA3and 
PSMC1). Proteins related to the cell cycle include PNCA, 
MCM2, MCM6, and 14-3-3 proteins. Five heat shock pro
teins and four subunits of chaperonin CCT/TriC are 

ubiquitinated. Other interesting ubiquitinated proteins 
include NACA (nascent polypeptide-associated complex sub
unit alpha), DDB1 (DNA damage-binding protein 1), NUDT5 
(ADP-sugar pyrophosphatase), and NPM1 (nucleophosmin). 
Ubiquitination is typically the ‘kiss of death’ modification 
that marks proteins destined for degradation by the protea
some, although ubiquitination may also modulate protein 
interaction and activity. Intriguingly, we identified UBA1 
(ubiquitin-like modifier-activating enzyme 1), which cata
lyzes the first step in ubiquitin conjugation and plays a 
central role in ubiquitination, as a ubiquitination-altered 
DS-affinity autoAg, which is consistent with our previous 
studies.[1,2] 

DS-affinity proteins altered in T cells of COVID- 
19 patients 

Because Jurkat cells were established from human T-cell 
lymphoblastic leukemia, we searched for DS-affinity proteins 
that were altered in T cells of seven COVID-19 patients.[27] 

Five proteins (LCP1, CALR, HSPA5, HSP90AA1, and 
HSP90AB1) were up-regulated in CD4+ T cells, and 13 pro
teins (LCP1, CALR, HSPA5, HSP90AA1, HSP90AB1, HSPD1, 
HSPH1, MCM4, VIM, PTMA, TUBB, H1-2, and LMNB1) were 
up-regulated in CD8+ T cells of COVID-19 patients. Three 
proteins (ACTG1, EEF1B2, and SRSF5) were down-regulated 
in the CD4+ T cells, and three proteins (ATCG1, EEF1B2, and 
NACA) were down-regulated in CD8+ T cells. Remarkably, 
all up-regulated DS-affinity proteins are known autoAgs 
(Table 1). NACA, ACTG1, and SRSF5, which were down- 
regulated at the mRNA level, are also known autoAgs. 
EEF1B2 (or EEF1B, elongation factor 1-beta) has not been 
identified as an autoAg, although other similar elongation 
factors such as EEF1A and EF2 are known autoAgs (see refer
ences in Table 1). 

Among the up-regulated proteins, LCP1 was up-regulated 
in CD4+ T cells of two patients (out of four patients with 
available data) and in CD8+ T cells of two patients (out of 
five patients with available data), with one of the patients 
having LCP1 up in both CD4+ and CD8+ T cells. Up- 
regulation of heat shock proteins, particularly HSPA5 and 
HSP90AA1, was detected in CD4+ T cells of two patients 
and CD8+ T cells of one patient. MCM4 up-regulation was 
detected in CD8+ T cells of three out of six patients. Among 
down-regulated proteins, NACA was detected in CD4+ T 
cells of one patient and CD8+ T cells of all three patients 
whose data were available. EEF1B2 was down in CD4+ T 
cells of three patients (out of five with available data) and 
down in CD8+ T cells of two out of three patients. ACTG1 
down-regulation was detected in CD4+ T cells of two 
patients and CD8+ T cells of one patient. SRSF5 was 
down in CD4+ T cells of three out of five patients. 

Among these T-cell-altered proteins, LCP1 and NACA are 
perhaps most interesting. LCP1 (plastin-2, an actin binding 
protein) has been found to play a significant role in T cell 
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activation in response to co-stimulation through TCR/CD3 
and regulates the stability of the immune synapse of naïve 
and effector T cells.[124] NACA (nascent polypeptide- 

associated complex subunit alpha) binds to newly synthe
sized polypeptide chains as they emerge from the ribosome, 
blocks their interaction with the signal recognition particle, 

(a) Phosphorylation

(b) Ubiquitination

Fig. 4. DS-affinity proteins that show 
changes in phosphorylation or ubi
quitination in SARS-CoV-2 infection. 
(a) Phosphorylation: marked proteins 
are associated with gene expression 
(15 proteins, red), chromosome organiza
tion (13 proteins, green), and ATP binding 
(12 proteins, blue). (b) Ubiquitination: 
marked proteins are associated with pro
tein folding (12 proteins, pink), chromo
some organization (15 protein, green), 
translation (six protein, aqua), cyto
skeleton (eight proteins, yellow), and 
apoptosis (10 proteins, brown).    
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and prevents inappropriate targeting of non-secretory poly
peptides to the endoplasmic reticulum. NACA is an IgE 
autoAg in atopic dermatitis patients with chronic skin mani
festations.[125] The significance of these T-cell proteins in 
COVID-19 and autoimmunity merits further study. 

Conclusion 

In order to establish a comprehensive COVID-19 
autoantigen-ome, we have been profiling autoAgs from dif
ferent cell and tissue types. Compared to other cells we have 
examined, Jurkat T-cells contain relatively fewer DS-affinity 
autoAgs than HFL1 lung fibroblasts, A549 lung epithelial 
cells, HS-Sultan B-lymphoblasts, and HEp-2 fibroblasts. 
Although cells share numerous autoAgs, each cell type 
gives rise to unique COVID-altered autoAg candidates, 
which may explain the wide range of symptoms experienced 
by patients with autoimmune sequelae of SARS-CoV-2 infec
tion. We believe that our effort of discovering autoAgs 
across different cell types provides a comprehensive and 
valuable autoAg database for better understanding of auto
immune diseases and post-COVID-19 health problems. 

Supplementary material 

Supplementary material is available online. 
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