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ABSTRACT 

We obtain gas-phase homolytic Al–H bond dissociation enthalpies (BDEs) at the CCSD(T)/CBS 
level for a set of neutral aluminium hydrides (which we refer to as the AlHBDE dataset). The 
Al–H BDEs in this dataset differ by as much as 79.2 kJ mol−1, with (H2B)2Al–H having the lowest 
BDE (288.1 kJ mol−1) and (H2N)2Al–H having the largest (367.3 kJ mol−1). These results show that 
substitution with at least one –AlH2 or –BH2 substituent exerts by far the greatest effect in 
modifying the Al–H BDEs compared with the BDE of monomeric H2Al–H (354.3 kJ mol−1). 
To facilitate quantum chemical investigations of large aluminium hydrides, for which the use of 
rigorous methods such as W2w may not be computationally feasible, we assess the performance 
of 53 density functional theory (DFT) functionals. We find that the performance of the 
DFT methods does not strictly improve along the rungs of Jacob’s Ladder. The best- 
performing methods from each rung of Jacob’s Ladder are (mean absolute deviations are given 
in parentheses): the GGA B97-D (6.9), the meta-GGA M06-L (2.3), the global hybrid-GGA 
SOGGA11-X (3.3), the range-separated hybrid-GGA CAM-B3LYP (2.1), the hybrid-meta-GGA 
ωB97M-V (2.5) and the double-hybrid methods mPW2-PLYP and B2GP-PLYP (4.1 kJ mol−1).  

Keywords: aluminium hydrides, bond dissociation energy, CCSD(T), density functional theory, 
DFT, free radicals, hydrogen storage, W2 theory. 

Introduction 

Neutral aluminium hydride reagents (i.e. R1R2Al–H) are useful reagents in organic 
synthesis,[1] and species such as alane (AlH3) have also attracted interest as hydrogen 
storage materials, demonstrating potential application as a rocket propellant[2] and as a 
hydrogen source for portable fuel cells.[3,4] Besides the potential technological applica
tions of alane, we note that attention has also been given to ways in which non- 
polymerised forms of this reagent may be prepared and used in synthetic chemistry. 
Recently, a 1:2 alane arylphosphane adduct has been synthesised, which was shown to be 
able to release essentially free non-polymerised AlH3, which could be used in reduction 
and hydroalumination reactions.[5] Bulkier aluminium hydride species, such as diisobu
tylaluminium hydride (DIBAl-H), have been employed in effecting a wide range of 
reduction processes, including the (i) reduction of ketones and aldehydes to the corre
sponding alcohols, (ii) transforming α,β-unsaturated esters into the corresponding allylic 
alcohols[6,7] and (iii) epoxide ring opening reactions.[8] While the reactions of alkyl- 
substituted aluminium hydrides have received considerable attention, other aluminium 
hydride species have also been used in synthesis, albeit with much more limited scope to 
date. As one example, we note that Cl2AlH has been employed for the ring-opening of 
2-substituted 1,3-dioxolanes.[9] In addition, there has been interest in the synthesis of other 
Al–H-containing species, and there has been success in generating and characterising 
species such as ClAlH2.[10] 

Owing to the synthetic and technological applications of neutral aluminium hydrides, 
it would be insightful to have a greater understanding of some of the more salient 
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thermodynamic properties of these compounds. One of the 
most fundamental thermochemical properties of such spe
cies, which has not yet received attention, are the homolytic 
Al–H bond dissociation enthalpies (BDEs) of such species 
(i.e. the energies associated with Eqn 1). 

R R Al–H R R Al + H1 2 1 2 (1)  

Knowledge of how substituents affect the magnitude of the 
strength of Al–H bonds toward homolytic dissociation 
would be insightful, not least because such radical reactions 
may have industrial applications. For example, in the stabi
lisation of AlH3 by species such as 2-mercaptobenzothiazole, 
a key step in the mechanism has been suggested to involve 
homolytic dissociation of the Al–H bond of AlH3 to form the 
H2Al˙ radical.[11] While there does not currently exist in the 
literature any systematic study of Al–H homolytic BDEs, we 
wish to note that numerous experimental and theoretical 
studies have been reported which have focussed on the syn
thesis and characterisation of a number of aluminium(II) radi
cals (i.e. of the type R1R2Al˙, which could be formed upon 
homolytic Al–H bond dissociation). The parent radical, H2Al˙, 
has been synthesised and characterised by spectroscopic 
methods.[12,13] A number of substituted aluminium-centred 
radicals have also been produced including: CH3AlH,[14] 

HAlNH2,[15–17] Al(NH2)2,17 HAlPH2,[18,19] HAlOH,[20] Al 
(OH)2

12 and HAlSH.[21] 

The present study addresses the gap in the literature 
concerning the extent to which substituents affect the 
strength of Al–H bonds toward homolytic dissociation. To 
achieve this, we report a high-level quantum chemical 
investigation (performed using the W2w thermochemical 
protocol), in which the gas-phase homolytic BDEs of a set 
of 18 aluminium hydrides (i.e. R1R2Al–H) bearing a diverse 
range of substituents have been determined (which we refer 
to as the AlHBDE dataset). In addition, to facilitate future 
studies of the homolytic BDEs of larger aluminium hydrides, 
for which the use of the W2w thermochemical protocol is 
not computationally feasible, we also assess the perform
ance of a wide range of contemporary density functional 
theory (DFT) methods to determine suitable lower-cost 
methods that could be applied for such a purpose. 

Computational methods 

The geometries of all species have been obtained at the 
B3LYP/AVTZ level of theory (where AVnZ denotes the use 
of aug-cc-pVnZ basis sets for hydrogen and first-row ele
ments and aug-cc-pV(n + d)Z basis sets for second-row ele
ments).[22,23] The validity of each structure as being a 
minimum on the potential energy surface was confirmed 
by all real harmonic vibrational frequencies. Using the 
geometries obtained at the B3LYP/AVTZ level of theory, 
we then performed higher-level calculations employing the 

W2w thermochemical protocol.[24] To compute a W2w 
energy, several calculations must be performed. First, the 
underlying SCF/CBS energy is obtained using a two-point 
extrapolation of the form E(L) = E∞ + A/L5 in conjunction 
with the AVQZ and AV5Z basis sets. The following correc
tions were added to the underlying SCF/CBS energy: 
(i) ΔCCSD (obtained using a two-point extrapolation of the 
form E(L) = E∞ + A/L3 in conjunction with the AVQZ and 
AV5Z basis sets), (ii) Δ(T) (a correction for parenthetical 
triples excitations, obtained using a two-point extrapolation 
of the form E(L) = E∞ + A/L3 in conjunction with the AVTZ 
and AVQZ basis sets), (iii) a core-valence correction (ΔCV) 
obtained as the difference between the all-electron CCSD 
(T)/MTsmall energies (with the exception of second-row 
elements, in which the 1s electrons are frozen) and the 
corresponding frozen core calculations and (iv) a scalar 
relativistic correction (ΔRel.), which is obtained by way of 
Douglass–Kroll–Hess (DKH) calculations[25,26] and corre
sponds to the energy difference between a frozen-core 
DKH-CCSD(T)/MTsmall and regular CCSD(T)/MTsmall cal
culations. The final all-electron relativistic, bottom-of-the- 
well W2w energy is given by the following formula: 
W2wrel,el = SCF/CBS + ΔCCSD + Δ(T) + ΔCV + ΔRel. To 
obtain energies at 298 K (i.e. BDE298), the W2w values 
were amended by the inclusion of scaled ZPVE and Hvib 
contributions, both of which have been obtained at the 
B3LYP/AVTZ level of theory, and were scaled by 0.9884 
and 0.9987, respectively.[27] 

We have additionally assessed a diverse array of different 
DFT functionals for their ability to compute gas-phase 
homolytic Al–H BDEs (in conjunction with the AVTZ and 
AVQZ basis sets), using the W2w non-relativistic bottom-of- 
the-well BDEs as reference values. The DFT exchange- 
correlation functionals considered in this study, ordered by 
their rung on Jacob’s ladder, are the generalised gradient 
approximation (GGA) functionals: BLYP,[28,29] B97-D,[30] 

HCTH407,[31] PBE,[32] revPBE,[33] PB86,[29,34] and 
BPW91,[29,35] the meta-GGA (MGGA) functionals: M06-L,[36] 

TPSS,[37] τ-HCTH,[38] VSXC,[39] M11-L,[40] MN12-L,[41] 

MN15-L,[42] r2SCAN,[43] and B97M-V,[44] the hybrid-GGAs 
(HGGA): BH&HLYP,[45] B3LYP,[28,46,47] B3P86,[34,46] 

B3PW91,[35,46] PBE0,[48] B97-1,[49] X3LYP,[50] SOGGA11- 
X,[51] APF,[52] and the range-separated functionals ωB97,[53] 

ωB97X,[53] ωB97X-V,[54] N12-SX,[55] CAM-B3LYP,[56] the 
hybrid-meta GGAs (HMGGA): M05,[57] M05-2X,[58] M06,[59] 

M06-2X,[59] M08-HX,[60] MN15,[42] BMK,[61] TPSSh,[62] 

τ-HCTHh,[38] PW6B95,[63] and the range separated functionals 
MN12-SX,[55] M11,[64] ωB97M-V,[65] and the double hybrid 
(DH) functionals: B2-PLYP,[66] mPW2-PLYP,[67] B2GP- 
PLYP,[68] DSD-BLYP,[69] PWPB95,[70] DSD-PBEP86,[71,72] 

DSD-PBEB95,[71] PBE0-DH,[73] PBEQI-DH.[74] Empirical D3 
dispersion corrections[75,76] were included using the Becke– 
Johnson[77] damping potential (denoted by the suffix -D3). 
All calculations have been performed using the Gaussian 16 
(rev. C.01) and ORCA 5.0 programs.[78–81] 
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Results and discussion 

General overview of the AlHBDE dataset 

The full set of gas-phase homolytic Al–H BDEs (Eqn 1), 
which have been obtained in conjunction with the W2w 
thermochemical protocol, are provided in Table 1. In addition 
to reporting the final homolytic gas-phase Al–H BDEs at 298 K 
(i.e. BDE298), we have also included the various contributions 
that lead to these values. These contributions include the 
underlying BDEs obtained using Hartree–Fock theory (ΔSCF), 
a correction for single and double excitations (ΔCCSD), 
a correction for the inclusion of quasi-perturbative triple exci
tations (Δ(T)), a core-valence correction (ΔCV), a scalar 
relativistic correction obtained within the Douglass–Kroll– 
Hess approximation (ΔRel.), the zero-point vibrational energy 
contribution (ΔZPVE) and finally, an enthalpy correction 
(ΔHvib) at 298 K. The species have been selected such 
that there is a reasonable selection of electron-donating 
and electron-withdrawing substituents. From a general per
spective, we note that the Al–H BDEs of the molecules in 
this dataset (at 298 K) differ by up to 79.2 kJ mol−1, 
with (H2B)2Al–H having the lowest BDE (288.1 kJ mol−1), 
while (H2N)2Al–H is associated with the largest BDE 
(367.3 kJ mol−1). We note that the simplest molecule within 
this family, namely H2Al–H, has a BDE of 354.3 kJ mol−1. 
Prior to embarking on a more specific discussion concerning 
the effect of substituents in governing the magnitude of the 

Al–H BDEs, we make a few points to: (i) address the likely 
accuracy of the reported BDEs obtained at the W2w level by 
using an energy-based diagnostic for the importance of post- 
CCSD(T) contributions and (ii) examine the performance of 
the lower cost W1w thermochemical protocol, which may be 
applied to the high-level study of larger aluminium hydride 
species, for which the use of the more rigorous W2w protocol 
might be computationally prohibitive. 

First, we wish to point out that the W2w thermochemical 
protocol, which in effect affords an energy at the all-electron 
CCSD(T) basis-set-limit level, does not include post-CCSD(T) 
corrections. In some systems, for example those that exhibit 
high degrees of non-dynamical correlation, post-CCSD(T) cor
rections can be of considerable magnitude and their exclusion 
can render any computed thermodynamic quantity substan
tially less accurate. To address the likely reliability of the 
CCSD(T) method in this context, an energy-based diagnostic, 
namely the percentage of the atomisation energy accounted 
for by parenthetical connected triple excitations, %TAE[(T)] 
has been developed.[24,82] This diagnostic has been used pre
viously for the purposes of validation of datasets of the BDEs 
of a range of other chemical bonds.[83–87] It has been shown 
that for species with %TAE[(T)] ≤ 5%, post-CCSD(T) contri
butions are unlikely to exceed 2 kJ mol−1. An analysis by 
Chan also supported the adoption of this recommended cut- 
off of ≤ 5%.[88] As the %TAE[(T)] diagnostics of all molecules 
considered in this study are well below the 5% threshold 
(ranging from 0.1% in the case of AlH3 and AlH2˙ to 3.0% in 

Table 1. Component breakdown and final W2w gas-phase homolytic Al–H BDEs (all components and energies are reported in kJ mol−1).           

Molecule ΔSCF ΔCCSD Δ(T) ΔCV ΔRel. ΔZPVE ΔHvib BDE298   

(H2B)2Al–H (1)  266.4  43.1  −7.2  −1.6  −0.5  −17.0  4.9  288.1 

(H2Al)2Al–H (2)  246.8  61.7  −3.0  −0.7  −0.3  −15.8  4.6  293.3 

(H2B)HAl–H (3)  296.7  42.5  −5.6  −1.8  −0.6  −20.6  6.3  317.0 

(H2Al)HAl–H (4)  277.1  64.6  −1.8  −0.9  −0.4  −18.9  5.1  324.8 

(H2N)(H2B)Al–H (5)  305.8  43.7  −5.5  −1.6  −0.5  −20.1  5.7  327.4 

(H3Si)HAl–H (6)  282.3  79.1  −0.3  −0.4  −0.4  −20.0  5.4  345.7 

(PH2)HAl–H (7)  285.5  79.2  −0.7  −0.4  −0.5  −20.1  5.4  348.5 

(SH)HAl–H (8)  287.1  80.6  −0.7  −0.3  −0.4  −20.0  5.4  351.6 

Cl(H)Al–H (9)  288.1  81.1  −0.6  −0.5  −0.5  −20.8  5.5  352.4 

Cl2Al–H (10)  286.9  82.3  −1.0  −0.2  −0.6  −18.9  5.3  353.8 

H2Al–H (11)  288.5  82.4  0.0  −0.3  −0.3  −21.7  5.7  354.3 

(OH)HAl–H (12)  290.9  80.9  −0.9  −0.3  −0.3  −21.1  5.6  354.9 

F(H)Al–H (13)  290.3  82.0  −0.7  −0.4  −0.4  −21.2  5.6  355.2 

CH3(H)Al–H (14)  289.9  82.0  −0.3  −0.2  −0.3  −20.1  5.0  356.0 

(CN)(H)Al–H (15)  290.3  82.9  −0.5  −0.2  −0.3  −20.7  5.6  357.1 

(NH2)HAl–H (16)  293.5  82.8  −0.4  +0.1  −0.2  −21.0  5.6  360.3 

F2Al–H (17)  290.2  85.8  −1.1  +0.1  −0.3  −19.4  5.4  360.7 

(H2N)2Al–H (18)  298.2  84.2  −0.7  +0.6  −0.2  −21.1  6.2  367.3   
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the case of (CN)HAl˙), inclusion of post-CCSD(T) contributions 
are therefore unlikely to affect the BDEs to any significant 
extent. On this basis, it stands to reason that the W2w BDEs 
reported in this study are expected to be within chemical 
accuracy (i.e. with deviations below 1 kcal mol−1) from refer
ence values obtained at the full configuration interaction (FCI) 
infinite basis-set limit.[89] 

We have also sought to consider whether the W1w 
thermochemical protocol, which is less computationally 
demanding than W2w, and hence could be applied to the 
study of larger aluminium hydride species, would also result 
in reliable Al–H BDEs. W1w theory employs the AVTZ and 
AVQZ (rather than AVQZ and AV5Z) basis sets for the 
computation of the ΔSCF and ∆CCSD components, and the 
AVDZ and AVTZ (rather than AVTZ and AVQZ) basis sets are 
employed for the computation of the Δ(T) correction. 
Having performed this analysis (see the Supporting material 
for the non-relativistic bottom-of-the-well valence W1w 
BDEs and the values of the various contributions giving 
rise to these BDEs), we note that the differences between 
W2w and W1w are relatively small. First, we note that the 
W1w protocol systematically overestimates the Al–H BDEs 
compared with those obtained using the W2w protocol with 
an MD and MAD of +0.5 kJ mol−1. Second, we note that the 
largest deviation, which amounts to 1.0 kJ mol−1, was 
observed in the case of the BDE of (H2B)2Al–H. As a result 
of breaking down the BDE of this molecule into the individ
ual components, we find that the deviation of 1.0 kJ mol−1 

between the W1w and W2w value arises predominantly 
because of a larger difference in the ΔCCSD correction 
(0.7 kJ mol−1), with only a 0.3 kJ mol−1 difference in the 
underlying SCF energy and a difference of –0.1 kJ mol−1 for 
the Δ(T) contribution. 

Substituent effects in governing the magnitude of 
Al–H BDEs 

Upon inspection of the AlHBDE dataset (Table 1), we note 
that, although the BDEs span a range of 79.2 kJ mol−1, this 
relatively wide range belies the fact that upon exclusion of 
those molecules bearing at least one –BH2 or –AlH2 substit
uent (i.e. molecules 1–5) the resulting variation in BDEs 
amounts to 21.6 kJ mol−1. Prior to discussing the BDEs of 
molecules 1–5, we note that, whereas substitution by third- 
period elements (i.e. Si, P, S, and Cl) results in molecules 
that have lower Al–H BDEs than that of H2Al–H, attachment 
of second-period elements (i.e. C, N, O, and F) serves to 
increase the Al–H BDEs. Of the species considered in this 
study, we note that (H2N)2Al–H is associated with the larg
est BDE (i.e. 13.0 kJ mol−1 higher than that of H2Al–H). The 
finding that aluminium hydrides substituted by electron- 
donating substituents are not associated with significantly 
lower Al–H BDEs (and in the case of electron-donating 
groups belonging to the second period actually serve to 
increase the Al–H BDEs compared with that of H2Al–H), 

can be attributed, in part, to the fact that the resulting 
aluminium-centred radicals adopt electronic states that are 
σ rather than π. By performing NBO calculations at the 
B3LYP/AVTZ level of theory, we note that overlap of 
the lone-pairs (of the π-electron-donating substituents) and 
the formally vacant 3p orbitals of the central Al atoms in 
Al–H-containing precursor molecules are conserved in the 
resulting radicals, and consequently the radicals do not 
benefit from the stabilisation that might be expected to 
arise if overlap between the half-filled orbital on the alu
minium and the lone pair of the donor substituents (for 
example, which has been noted previously in the case of 
C–H BDEs)[90] were to occur. 

As mentioned previously, the most dramatic substituent 
effects were observed in the case of molecules containing at 
least one –BH2 or –AlH2 substituent(s), with the magnitude 
of such effects being more pronounced in the case of the 
former. In this regard, we note that introduction of one –BH2 
substituent (as in (H2B)HAl–H) serves to reduce the result
ing Al–H BDE by 37.3 kJ mol−1 compared with that of 
H2Al–H, while introduction of a single –AlH2 substituent 
reduces the BDE by a smaller magnitude (29.5 kJ mol−1). 
The results of our computation for such species also 
indicate a sizable additive effect concerning the introduction 
of two such substituents, with the BDE of (H2B)2Al–H 
being 66.2 kJ mol−1 lower than that of H2Al–H (BDE =  
354.3 kJ mol−1) and the BDE of (H2Al)2Al–H being reduced 
by 61.0 kJ mol−1 compared with that of H2Al–H. The signif
icantly lower Al–H BDEs of molecules containing either 
–BH2 or –AlH2 substituent(s) may be attributed, at least in 
part, to the unpaired electron in each of the resulting radi
cals being delocalised onto either the substituent –BH2 or 
–AlH2 groups (refer to the Supporting material for images of 
the SOMOs of the radicals resulting from the homolytic 
dissociation of the Al–H bonds of molecules 1–4). The extent 
of such delocalisation effects can be probed by way of 
Mulliken spin density calculations. For example, in (H2B) 
HAl˙ (which adopts an almost planar structure, having a 
H–Al–B angle of 173.1° at the B3LYP/AVTZ level), we 
compute spin densities (at the ROHF/AVTZ level) of 
0.437 for the boron atom and 0.531 for the aluminium 
atom. In a similar vein, we note that the (H2B)2Al˙ radical, 
which adopts a planar structure with D2h symmetry, is 
associated with spin densities of 0.194 on each of the 
substituent boron atoms and 0.607 on the central alumin
ium atom. Analogous effects, although of smaller magni
tude, were also noted in the case of radicals containing at 
least one –AlH2 substituent. In this regard, we compute a 
spin density of 0.140 on the –AlH2 group of (H2Al)HAl˙, 
while in the case of (H2Al)2Al˙, the substituent aluminium 
atoms are each associated with spin densities of 0.102. 
The reduced extent of delocalisation in the aluminium- 
substituted radicals may account, in part, for why these 
species have higher Al–H BDEs than the comparable –BH2 
substituted molecules. 

R. J. O’Reilly and A. Karton                                                                                                        Australian Journal of Chemistry 

840 



Assessment of DFT methods for the 
computation of Al–H BDEs 

Attention is now turned to considering the performance of a 
diverse array of lower-cost DFT methods for their ability to 
compute gas-phase homolytic Al–H BDEs (against the AlHBDE 
dataset). To assess these methods, we have utilised electronic 
non-relativistic bottom-of-the-well BDEs (i.e. those obtained 
according to BDENR,el = ΔSCF + ΔCCSD + Δ(T) + ΔCV).  
Table 2 gives the mean absolute deviations (MADs), mean 
deviations (MDs), largest deviations (LDs; the species that 
correspond to the largest deviation is given in bold) and the 
number of outliers (NOs, which constitute the number of 
species with an absolute deviation from the W2w reference 
value of ≥10 kJ mol−1), in conjunction with both the AVTZ 
and AVQZ basis sets. 

Prior to considering the performance of the functionals 
within each class, we make the following general points con
cerning the performance of these methods overall. First, the 
best-performing methods overall are CAM-B3LYP, M06-L, 
ωB97M-V and ωB97X-D, which in conjunction with the 
AVQZ basis set, are associated with MADs of 2.1, 2.3, 2.5 
and 2.7 kJ mol−1, respectively. Both CAM-B3LYP and 
ωB97X-D attain similar LDs of 4.1 and 4.3 kJ mol−1, respec
tively, whereas ωB97M-V attains a slightly higher LD of 
7.1 kJ mol−1 (Table 2). Second, of the 53 functionals consid
ered in this study, we note that in most of the cases, the use of 
the larger AVQZ basis set affords better performance than with 
the smaller AVTZ basis set. Having said that, the magnitude of 
these performance improvements is generally small for the 
conventional DFT methods (i.e. for the most part, being less 
than 1.0 kJ mol−1). As expected, these differences can 
become more significant for the double-hybrid functional; 
for example, for the DSD-PBEP86 method, the difference 
reaches 2.6 kJ mol−1. Of the seven functionals in which we 
note that using the smaller AVTZ basis set was found to offer 
better performance, the largest performance improvement 
was noted in the case of M06-2X (1.9 kJ mol−1). Third, the 
overwhelming majority of the functionals systematically 
underestimate the BDEs. In this regard, only ten out of the 
53 functionals assessed are associated with positive MDs. 
This finding, that the selected functionals tend to underesti
mate the Al–H BDEs, is consistent with previous studies that 
have demonstrated that DFT methods generally underesti
mate the BDEs of other bonds, for example, in the case of 
C–Cl,[84] B–Cl,[85] N–Br[91] and S–F[83] bonds. Fourth, for 
approximately 60% of the functionals considered in this 
study (in conjunction with the AVQZ basis set), their largest 
deviation was attributed to the computation of the Al–H BDE 
of molecule 1 (i.e. (BH2)2B–H). 

We now turn our attention to considering the perform
ance of the functionals within each family. These results will 
be discussed in the context of those values obtained in 
conjunction with the AVQZ basis set, not only as for the 
vast majority of the functionals use of this basis set affords 

better performance, but also because these values are closer 
to the basis-set-limit values for each functional. This is 
particularly true for the double-hybrid methods, which exhi
bit a substantially slower basis set convergence due to the 
MP2-like correlation term.[92] 

With the exception of B97-D, the GGA functionals show 
very poor performance with MADs between 15.0 (BP86) and 
33.6 (revPBE) kJ mol−1. B97-D performs considerably better 
but still results in a large MAD of 6.9 kJ mol−1. The inclusion 
of the kinetic energy density in the functional form consid
erably improves the performance. With the exception of 
three functionals (r2SCAN, τ-HCTH and MN12-L) which 
attain MADs between 11.9 and 20.5 kJ mol−1, the MGGAs 
attain MADs between 2.3 (M06-L) and 7.6 (B97M-V)  
kJ mol−1. Of the considered HGGA methods, only one func
tional provides better performance than M06-L, namely the 
range-separated hybrid CAM-B3LYP with a MAD of merely 
2.1 kJ mol−1. This performance is followed by another 
range-separated hybrid, ωB97X-D, which attains a MAD of 
2.7 kJ mol−1, respectively. We note that these long-range- 
corrected functionals involve 65–100% exact exchange at 
long-range. The best-performing global hybrids are 
SOGGA11-X and BH&HLYP, with MADs of 3.3 and 
3.8 kJ mol−1, respectively. We note that these two methods 
involve 40–50% of exact exchange. The other global hybrids 
show relatively poor performance, with MADs ranging 
between 4.8 (B3P86) and 23.7 (PBE0) kJ mol−1. The 
HMGGA methods do not result in better performance relative 
to the best-performing MGGA and HGGA methods. The 
best-performing HMGGA methods attain MADs of 2.5 
(ωB97M-V), 3.4 (M06), 3.7 (TPSSh) and 4.1 (BMK)  
kJ mol−1. Thus, again we find that a range-separated 
HMGGA provides better performance than the global 
HMGGAs. Interestingly, the global HMGGA functionals involve 
a wide range of exact exchange amounts, ranging between 
10% (TPSSh) and 42% (BMK). Somewhat surprisingly, the 
considered DHDFT methods also do not provide better per
formance relative to the best-performing MGGA and HGGA 
methods. The best-performing DHDFT methods are mPW2- 
PLYP and B2GP-PLYP with the same MAD of 4.1 kJ mol−1. 
These results suggest that the performance for the Al–H BDEs 
does not strictly improve along the rungs of Jacob’s Ladder. 

Finally, it is of interest to examine the effect of adding an 
empirical dispersion correction on the performance of the 
DFT methods. For this purpose we consider the pairwise D3 
dispersion correction. Table 3 gives an overview of the effect 
of adding the dispersion corrections for a selection of DFT 
methods. The tabulated values are the difference in MAD 
between the dispersion-uncorrected and dispersion-corrected 
functionals, namely ∆MAD = MAD(DFT) − MAD(DFT-D3). 
Therefore, a positive ∆MAD value indicates that adding the 
dispersion correction improves the overall performance of 
the functional. Inspection of Table 3 reveals that this is 
indeed the case for practically all of the considered DFT 
methods. With the exception of revPBE, the improvements 
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Table 2. Performance of various DFT procedures (in conjunction with the AVTZ and AVQZ basis sets) for the calculation of gas-phase 
homolytic Al–H bond dissociation energies relative to W2w values (in kJ mol−1).            

TypeA Functional AVTZ AVQZ 

MAD MD LD NO MAD MD LD NO   

GGA revPBE  34.3  −34.3  46.3 (1)  18  33.6  −33.6  45.1 (1)  18 

BPW91  31.5  −31.5  44.5 (1)  18  30.8  −30.8  43.4 (1)  18 

PBE  30.9  −30.9  46.9 (1)  18  30.2  −30.2  45.6 (1)  18 

HCTH407  27.4  −27.4  38.8 (1)  18  26.6  −26.6  37.5 (1)  18 

BLYP  17.6  −17.6  30.2 (1)  18  16.9  −16.9  28.6 (1)  18 

BP86  15.5  −15.5  30.3 (1)  18  15.0  −15.0  29.1 (1)  18 

B97-D  7.6  −7.4  18.7 (1)  3  6.9  −6.6  17.7 (1)  3 

MGGA r2SCAN  21.4  −21.4  31.6 (1)  18  20.5  −20.5  30.3 (1)  18 

τ-HCTH  12.8  −12.8  23.1 (1)  14  12.0  −12.0  22.2 (1)  14 

MN12-L  12.2  +8.4  18.6 (1)  15  11.9  +8.4  21.8 (14)  13 

B97M-V  7.1  +1.4  19.3 (1)  3  7.6  +3.8  15.5 (1)  3 

VSXC  6.9  −5.0  25.2 (1)  5  5.9  −2.6  22.1 (1)  4 

MN15-L  6.2  +0.8  18.5 (1)  2  5.8  +0.7  18.7 (1)  2 

TPSS  5.8  −5.8  11.7 (1)  2  5.4  −5.4  11.1 (1)  1 

M06-L  2.0  −1.6  7.1 (1)  0  2.3  −2.2  7.9 (1)  0 

HGGA PBE0  24.5  −24.5  31.5 (5)  18  23.7  −23.7  30.5 (5)  18 

APF  22.6  −22.6  29.2 (1)  18  21.9  −21.9  28.2 (5)  18 

APF-D  21.7  −21.7  28.4 (1)  18  21.0  −21.0  27.3 (1)  18 

B3PW91  19.9  −19.9  26.5 (1)  18  19.3  −19.3  25.4 (1)  18 

B97-1  13.2  −13.2  20.6 (1)  16  12.4  −12.4  19.4 (1)  16 

ωB97  10.4  +10.4  16.5 (18)  7  11.6  +11.6  17.2 (18)  11 

N12-SXB  10.9  −10.6  23.7 (1)  7  9.2  −8.8  21.2 (1)  5 

X3LYP  8.1  −8.1  14.3 (1)  2  7.4  −7.4  12.8 (1)  1 

B3LYP  7.9  −7.9  14.2 (1)  3  7.2  −7.2  12.8 (1)  1 

B3P86  5.4  −5.4  13.6 (1)  2  4.8  −4.8  12.5 (1)  2 

ωB97XB  3.1  +3.1  8.5 (1)  0  4.2  +4.2  10.4 (1)  1 

BH&HLYP  4.1  −3.2  5.8 (10)  0  3.8  −2.4  5.8 (3)  0 

SOGGA11-X  3.6  −2.5  8.7 (1)  0  3.3  −2.1  8.0 (1)  0 

ωB97X-DB  3.2  −3.1  5.1 (10)  0  2.7  −2.1  4.1 (12)  0 

ωB97X-VB  3.3  +3.3  10.4 (1)  1  4.1  +4.1  11.7 (1)  1 

CAM-B3LYPB  2.5  −2.3  4.6 (13)  0  2.1  −1.5  4.3 (13)  0 

HMGGA M06-2X  15.3  −15.3  20.7 (10)  17  17.2  −17.2  22.4 (10)  17 

M11B  9.6  +9.6  36.6 (2)  5  10.9  +10.9  35.5 (2)  5 

τ-HCTHh  11.4  −11.4  20.8 (1)  14  10.6  −10.6  19.6 (1)  11 

PW6B95  10.7  −10.7  19.3 (1)  7  10.0  −10.0  18.0 (1)  4 

PW6B95-D3  10.6  −10.6  19.2 (1)  6  9.9  −9.9  17.9 (1)  4 

M05-2X  8.0  −7.7  11.3 (5)  6  8.5  −8.4  11.6 (5)  7 

M08-HX  6.4  +6.4  11.8 (2)  1  7.8  +7.8  11.5 (2)  3 

(Continued on next page) 
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are relatively small and range between 0.1 (PW6B95) and 
1.0 (BLYP) kJ mol−1. Nevertheless, for functionals that are 
capable of sub-chemical accuracy, these corrections are sta
tistically significant. 

Conclusion 

Using the high-level W2w thermochemical protocol, we 
have computed a dataset of gas-phase homolytic Al–H 
BDEs for a set of 18 neutral aluminium hydrides (which 
we refer to as the AlHBDE dataset). The intention of this 
study was two-fold. First, we wanted to investigate the 
magnitude by which substituents can induce variations in 
the Al–H BDEs. Second, we assess the performance of DFT 
functionals for their ability to compute accurate Al–H BDEs. 
In addressing the first aim of this study, we note that the 
Al–H BDEs of the species in this dataset span a range of 
79.2 kJ mol−1, with (H2B)2Al–H having the lowest BDE 
(288.1 kJ mol−1) and (H2N)2Al–H having the largest BDE 
(367.3 kJ mol−1). Of the selected substituents, both –AlH2 
and –BH2 have by far the greatest effect in terms of altering 
the Al–H BDEs compared with that of the parent molecule 
H2Al–H. In fact, when molecules containing at least one of 
these two substituents are removed from the set, the Al–H 
BDEs of the remaining 13 molecules span a smaller range of 
21.6 kJ mol−1. In terms of the second part of the study, our 
assessment of a broad range of DFT methods for the compu
tation of Al–H BDEs (relative to the non-relativistic bottom- 
of-the-well W2w reference values) reveals that M06-L and 
CAM-B3LYP result in the best overall performance with 
MADs of 2.3 and 2.1 kJ mol−1, respectively. However, it 
should be noted that CAM-B3LYP is preferable since it 
results in a significantly smaller deviation of 4.3 kJ mol−1 

relative to the largest deviation of M06-L of 7.9 kJ mol−1. 

Table 2. (Continued)           

TypeA Functional AVTZ AVQZ 

MAD MD LD NO MAD MD LD NO   

MN15  8.0  −0.2  23.8 (1)  4  5.9  −1.9  21.8 (1)  3 

BMK  4.4  −4.4  9.3 (5)  0  4.1  −4.1  8.8 (5)  0 

TPSSh  4.2  −4.2  7.3 (1)  0  3.7  −3.7  6.7 (1)  0 

M06  4.2  +4.0  9.7 (18)  0  3.4  +3.2  8.4 (18)  0 

ωB97M-VB  3.1  +2.7  8.2 (18)  0  2.5  +2.2  7.1 (18)  0 

DH PBE0-DH  18.4  −18.4  21.2 (5)  18  17.2  −17.2  19.8 (15)  18 

PBEQI-DH  15.0  −15.0  16.1 (18)  18  13.1  −13.1  14.6 (17)  18 

DSD-PBEP86  9.1  −9.1  11.1 (10)  2  6.5  −6.5  8.4 (10)  0 

DSD-PBEB95  8.4  −8.4  9.6 (10)  0  5.8  −5.8  7.8 (17)  0 

B2-PLYP  7.3  −7.3  10.1 (1)  1  5.5  −5.5  7.8 (1)  0 

DSD-BLYP  7.8  −7.8  9.7 (17)  0  5.4  −5.4  8.0 (17)  0 

PWPB95  7.1  −7.1  9.7 (1)  0  5.4  −5.4  7.6 (1)  0 

B2GP-PLYP  6.2  −6.2  8.1 (10)  0  4.1  −4.1  6.3 (17)  0 

mPW2-PLYP  5.7  −5.7  7.5 (10)  0  4.1  −4.1  5.7 (10)  0 

AGGA, generalised gradient approximation; MGGA, meta-GGA; HGGA, hybrid-GGA; HMGGA, hybrid-meta-GGA; and DH, double hybrid. 
BRange separated XC functional.  

Table 3. Overview of the effect of adding a D3 dispersion 
correction on the performance of the DFT methods.      

TypeA Functional AVTZ AVQZ   

GGA revPBE  1.4  1.4 

PBE  0.6  0.6 

BLYP  1.0  1.0 

BP86  0.6  0.7 

MGGA TPSS  0.7  0.7 

HGGA PBE0  0.5  0.5 

B3PW91  0.8  0.9 

B3LYP  0.7  0.7 

HMGGA PW6B95  0.1  0.1 

BMK  0.0  –0.1 

ωB97M-V  0.2  0.2 

DH B2-PLYP  0.3  0.2 

The tabulated values are ∆MAD = MAD(DFT) – MAD(DFT-D3) (in kJ mol−1). 
A positive ∆MAD value indicates overall improvement in performance upon 
addition of the D3 dispersion correction. 
AGGA, generalised gradient approximation; MGGA, meta-GGA; HGGA, 
hybrid-GGA; HMGGA, hybrid-meta-GGA; and DH, double hybrid.  
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Supplementary material 

Structural formulae for all aluminium hydrides investigated 
in the present study are provided in Supplementary 
Table S1. The geometries (in Cartesian coordinates) of all 
molecules investigated in this study (obtained at the B3LYP/ 
AVTZ level of theory) are provided in Supplementary 
Table S2. In addition, the non-relativistic bottom-of-the- 
well valence W1w Al–H BDEs, as well as the individual 
components leading to these values, are provided in 
Supplementary Table S3. Images of the SOMOs (obtained 
at the ROHF/AVTZ level of theory) for the radicals arising 
via the homolytic Al–H dissociation of molecules 1–4 are 
provided in Supplementary Table S4. Supplementary mate
rial is available online. 
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