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ABSTRACT 

Homochiral (R)- and (S)-3,4-methylenedioxymethamphetamine (MDMA) were prepared in six 
steps (each) from the chiral pool precursors D- and L-alanine, respectively. The key step, copper- 
catalysed regioselective ring-opening of an N-tosylaziridine with an aryl Grignard reagent, 
proceeded in high yield with complete regioselectivity. Elaboration was achieved with preserva-
tion of configurational integrity, affording R- and S-MDMA hydrochlorides with enantiopurities of 
>99.5%, as determined by enantioselective HPLC with fluorescence detection. Attempts to apply 
the synthetic methodology to the synthesis of the homochiral enantiomers of the α-phenyl 
analogue of MDMA (UWA-001) were thwarted by a switch in regioselectivity in the key step.  

Keywords: aziridine, chiral pool, enantiopurity determination, HPLC with fluorescence detection, 
nucleophilic ring-opening, organic chemical synthesis, (R)- and (S)-3,4-methylenedioxymeth- 
amphetamine, R- and S-MDMA, X-ray crystal structure. 

Introduction 

3,4-Methylenedioxymethamphetamine (MDMA), better known by its street name 
‘ecstasy’, is a popular recreational drug with a long and interesting history[1–5] (see 
also the primer in this special issue).[6] The best-known member of a sub-class of 
psychedelic drugs known as the entactogens, MDMA has prosocial, mood-elevating, 
anxiolytic and fear-extinguishing behavioural effects that make it an attractive adjunct 
to psychotherapy.[7–9] Indeed, MAPS, the Multidisciplinary Association for Psychedelic 
Studies, have completed two successful Phase III clinical trials of MDMA-assisted psy-
chotherapy for post-traumatic stress disorder (PTSD) in which MDMA was found to be 
highly efficacious.[10,11] On the back of these trials, and in a world first, MDMA was 
rescheduled from S9 (drugs and poisons that may only be used for research) to S8 
(medicines with strict legislative controls) by the Therapeutic Goods Administration of 
Australia specifically for use in PTSD.[12] MDMA also has potential application in the 
treatment of eating disorders,[13,14] alcohol[15–20] and other substance abuse,[21,22] anxi-
ety,[23–27] chronic pain,[28] depression and other mood disorders,[23–27] and clinical trials 
for some of these indications are being planned.[11] 

Like all amphetamines, MDMA is chiral (Fig. 1), and recreational ‘ecstasy’ is probably 
exclusively racemic. The enantiomers contribute synergistically to the subjective effects 
of racemic MDMA.[29,30] The S-(+)-enantiomer is the more potent psychoactive agent 
and psychostimulant, and is a more effective releaser of the monoamine neurotransmit-
ters serotonin,[31,32] dopamine[7,32] and noradrenaline.[32] In non-human primates, 
R-MDMA was shown to release serotonin but not dopamine.[33] R-MDMA is also a low- 
efficacy partial agonist of 5-HT2A

1 receptors,[34–37] canonically associated with psyche-
delia. In addition, the R-enantiomer causes release of prolactin,[33,38] and may have 
enhanced prosocial activity, and fewer adverse side effects compared with S-MDMA or 
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the racemate.[39] Thus, it has been suggested that R-MDMA 
may be preferred over the racemate for psycho-
therapy.[22,39] Indeed, a small clinical trial (n = 24) in 
healthy volunteers is currently under way, examining the 
acute autonomic, biochemical and behavioural effects of 
racemic, R- and S-MDMA.[40] The chemistry and pharma-
cology of MDMA enantiomers are covered in more detail in 
recent excellent reviews.[5,22] 

Racemic MDMA has been shown to alleviate the motor 
side-effects of long-term dopaminergic therapy for 
Parkinson’s disease (PD), both anecdotally in a single 
human with disabling levodopa-induced dyskinesia[41] and 
in related animal models.[42–47] There are also suggestions 
that MDMA could positively address cognitive impulsive/ 
compulsive behaviours and visual hallucinations associated 
with extended use of dopaminergic agents in PD.[42,43] In 
addition, MDMA was reported to be selectively toxic to a 
Burkitt’s lymphoma cell line, perhaps via a serotonergic 
mechanism.[48–50] We required homochiral R- and S- 
MDMA for evaluation in both PD and Burkitt’s lymphoma 
models. 

Syntheses of enantiopure or enriched MDMA have been 
reviewed;[5] the chiral pool precursor or key stereoselec-
tive/resolution steps are outlined in Scheme 1. Nichols, 
Shulgin and co-workers described the first synthesis 
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Scheme 1. Syntheses of enantioenriched MDMA. rt, room temperature; d.r., diastereomeric ratio.   
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Fig. 1. Structures of the enantiomers of 3,4-methylenedioxymeth- 
amphetamine.  
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of homochiral R- and S-MDMA using a diastereoselective 
reductive amination of piperonyl methyl ketone (1) with the 
chiral derivatisation agents R- or S-α-methylbenzylamine 
(2), respectively.[29,51] Escubedo and colleagues developed 
syntheses of both enantiomers of MDMA involving a similar 
diastereoselective reductive sulfonamidation of ketone 4 
with the two enantiomers of Ellman’s sulfinamide, as exem-
plified by the conversion of R-5 to 6 with good diastereos-
electivity.[52] A shorter route using the same methodology, 
but beginning with piperonal, was recently patented by Xin, 
although this claim was not supported by any experimental 
data.[53] The patent also proposed a prophetic diastereose-
lective methylation of the N-sulfinylimine derived from 
homopiperonal (7) and the same chiral auxiliary to give 8. 
Diastereoselective addition of methylmagnesium iodide to 
the chemoenzymatically derived O-silyl cyanohydrin 9, fol-
lowed by in situ transimination with methylamine and boro-
hydride reduction, afforded the amino alcohol 10, which was 
proto-dehydroxylated in two steps, providing S-MDMA.[54] 

Surprisingly, a resolution of racemic MDMA via diastere-
omeric salts or amides has never been reported; however, 
Joglar and co-workers resolved racemic 3,4-di(benzyloxy) 
amphetamine (11) as the dibenzoyl-D-(+)-tartaric acid (12) 
salt, and advanced the S-enantiomer of amine 13 to 
S-MDMA.[55] Semi-preparative enantioselective chromatog-
raphy has also been used to resolve racemic MDMA,[56,57] 

including a tritiated isotopologue.[57] Finally, Xin patented 
(and exemplified) a chiral pool synthesis of R-MDMA, begin-
ning with levodopa methyl ester hydrochloride (14).[58] 

Herein, we report our contribution to the synthesis of 
homochiral MDMA using amino acid-derived chirons. 

Results and discussion 

Nenajdenko and co-workers reported the copper-catalysed 
regioselective ring-opening of L-amino acid-derived 
N-tosylaziridines 15 by (hetero)aryl Grignard reagents to 
give sulfonamides 16, which were deprotected without race-
misation to afford the corresponding primary amines, iso-
lated as the hydrochlorides 17 (Scheme 2).[59] 

This methodology was adapted to the synthesis of the 
(homochiral) enantiomers of MDMA, as depicted in  
Scheme 3. The required N-tosylaziridines R19 and S19 
were synthesised in three steps from D- and L-alanine, respec-
tively.[60,61] Copper-catalysed ring-opening of the aziridines 
by the Grignard reagent derived from 5-bromobenzodioxole 
(18)[62] gave the secondary sulfonamides R20 and S20 in 

excellent yield. The complete regioselectivity of the ring- 
opening step is attributed to steric hindrance at C2 of the 
aziridine,[63] the strongly electron-withdrawing tosyl group, 
which favours an SN2 mechanism,[64] and the soft nucleo-
philic character of the intermediate organocuprate. The 
reaction of activated aziridines with harder nucleophiles 
such as Grignard reagents (in the absence of a copper cata-
lyst) has been shown to give a mixture of regioisomers[64,65] 

and lower yields.[66] Quantitative N-methylation affording 
R21 and S21 was followed by reductive deprotection. 
Unsurprisingly, given the stability of sulfonamides,[67] 

deprotection proved troublesome. Conditions used are sum-
marised in Table 1. 

Sonication with magnesium in methanol was reported to 
be sufficiently gentle to avoid racemisation or ring-opening 
during deprotection of chiral N-tosylaziridines,[68] and this 
methodology was later adapted to deprotection of secondary 
sulfonamides related to the current work (Scheme 2).[59] 

When these conditions were applied to the tertiary sulfona-
mides S21 and R21 (Scheme 3), deprotection was clean, but 
stalled for no obvious reason, and neither addition of fresh 
magnesium nor extended sonication helped the reactions 
progress. As a result, yields of the free base MDMA enantio-
mers were moderate. However, in each instance, >40% of 
starting sulfonamide was recovered after chromatography. 
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Table 1. Reductive deprotection of tertiary sulfonamides to give 
enantiopure MDMA.      

Substrate ConditionsΑ % yield Refs   

R21 Mg, MeOH, )))  56  [59, 68] 

R21 Mg, MeOH, THF, )))  46 

S21  54 

S21 Na, naphthalene, DME  50  [69] 

S21 1,4-dimethoxybenzene, NaBH4, 
MeCN, EtOH, hν 254 nm  

33  [70, 71] 

Α))), sonication; DME, 1,2-dimethoxyethane.  

NTs

R

ArMgBr, cat. CuI

THF
Ar

R

NTs
H

1615

1. Mg, MeOH

2. HCl
Ar

R

NH3Cl

17

Scheme 2. Precedent adapted to the current work.[ 59]  
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Deprotection of S21 with sodium naphthalenide radical 
anion[69] was also inefficient, and photolytic reductive 
cleavage of R21[70,71] gave an even lower yield of 
R-MDMA, which was surprising given that quantitative 
yields have been reported with similar substrates.[72] On a 
positive note, all of these methods retained the configura-
tional integrity of the stereocentre (Table 2). It is likely that 

the efficiency of the synthesis presented here could be 
improved by judicious choice of a more easily removed 
aziridine-activating group, such as nosyl,[73] or phosphoryl.[74] 

We previously investigated analogues of MDMA with selec-
tive toxicity toward Burkitt’s lymphoma cell lines.[48,49] These 
studies revealed an order of magnitude increase in the cyto-
toxic potency of the α-phenyl analogue of MDMA (UWA-001; 

Table 2. Specific rotation data for R- and S-MDMA prepared by various methods.        

ApproachA Free base [α]D Hydrochloride [α]D Ref. 

R-MDMA S-MDMA R-MDMA S-MDMA   

(a) ND ND [α]D −18.2° [α]D +17.2° Shulgin[ 29, 51] 

(a) ND ND [α]D −17.5° 
(c 1, H2O) 

[α]D +17.4° 
(c 1, H2O) 

Nichols[ 29, 51] 

(b) ND ND [α]D −12.4° 
(c 0.6, H2O) 

[α]D +14.2° 
(c 0.6, H2O) 

Escubedo[ 52] 

(c) ND ND ND ND Xin[ 53] 

(d) ND ND ND [ ]D
20 +17.9° 

(c 1.00, H2O) 

Effenberger[ 54] 

(e) ND ND ND [ ]D
20 +15.2° 

(c 0.79, H2O) 

Joglar[ 55] 

Enantioselective HPLC ND ND ND ND Moreau[ 56] 

Enantioselective HPLC [ ]D
28 −6.7° 

(c 0.1, EtOH)B 
[ ]D

28 +9.4° 
(c 0.1, EtOH)B 

ND ND Hashimoto[ 57] 

(e) ND ND ND ND Xin[ 58] 

Present work [ ]D
23 −34.5° 

(c 1.1, CHCl3)
C 

[ ]D
23 +32.7° 

(c 1.2, CHCl3)
C 

[ ]D
23 −19.3°  

(c 1.1, H2O) 
[ ]D

23 +18.3°  
(c 1.0, H2O) 

Present work 

[ ]D
23 −33.7° 

(c 1.0, CHCl3)
D 

[ ]D
23 +33.1° 

(c 1.0, CHCl3)
E  

[ ]D
23 +33.0° 

(c 1.0, CHCl3)
F 

ND, no specific rotation data reported. 
ARefer to  Scheme 1. 
BNot specified whether the specific rotations reported were obtained for MDMA free base, MDMA hydrochloride, or MDMA trifluoroacetate (the latter is 
included as the eluent utilised by Hashimoto et al. contained trifluoracetic acid), or indeed some other salt of MDMA.[ 57] 

CR- and S-MDMA prepared from sulfonamides 21 using Mg in THF/MeOH with sonication. 
DR-MDMA prepared from R21 using 1,4-dimethoxybenzene and NaBH4 in MeCN/EtOH under UV irradiation (λ  254 nm). 
ES-MDMA prepared from S21 using Mg in MeOH with sonication. 
FS-MDMA prepared from S21 using sodium naphthalenide in DME.  
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the R-enantiomer is shown in Scheme 4) relative to MDMA. 
Hence, we were interested in the homochiral enantiomers of 
UWA-001, and the ring-opening methodology was applied to 
the N-tosylaziridines (R22 and S22) derived in two steps from 
phenylglycine.[75–77] However, surprisingly, the copper- 
catalysed reaction of the Grignard reagent derived from 18 
with S22 did not give the expected α-phenylsulfonamide R23; 
instead, the regioisomer 24, arising from nucleophilic attack 
at the more sterically hindered tertiary carbon of the aziridine 
S22, was the only isolated product that could be identified. 

The absolute configuration of 24 was not determined, but 
it was optically active and no indication of diastereomeric 
signals was detected in a 1H NMR spectrum in the presence 
of the chiral shift reagent europium tris[3-(heptafluoro- 
propylhydroxymethylene)]-(+)-camphorate. Thus, to the 
limit of 1H NMR sensitivity, 24 appears to be a single 
enantiomer. Toshimitsu and co-workers previously observed 
that ring-opening of racemic 22 with four equivalents of 
phenylmagnesium bromide, and no copper catalyst, favoured 
nucleophilic attack on the benzylic carbon, giving 26 in pref-
erence to 25 (Scheme 5).[78] When enantioenriched R22 was 
treated with allylmagnesium bromide, the regioselectivity was 
complete and the enantiopurity of the aziridine (94% e.e.) 
was preserved in the product 28. However, the configuration 
of 28 was not determined, so there is still more to learn about 
the stereochemistry and mechanism of the ring-opening of 
2-arylaziridines by Grignard reagents. 

Structural characterisation of MDMA 
hydrochloride and evidence for enantiopurity 

Table 2 summarises specific rotation data for (R)- and (S)- 
MDMA prepared by various methods. Reductive aminations, 
such as used in Nichols and co-workers’ first synthesis of 
enantioenriched MDMA,[29,51] (Scheme 1a) are unlikely to 
be 100% diastereoselective, but they did not report diastereo-
meric ratios. They recrystallised the hydrochlorides of 3 
(Scheme 1) and its enantiomer to enrich the major diastereo-
mer in each case. Following cleavage of the chiral auxiliaries, 
the enantiomeric hydrochlorides were also recrystallised 
twice, which presumably further enriched the enantiopurity. 

The specific rotations they obtained are close to those 
acquired in the current work (Table 2). At the time, there 
were no authentic specific rotations for Nichols et al. to 
compare with, and thus the configurations of the isolated 
MDMA hydrochlorides were uncertain. Interestingly, they 
stated that ‘it was anticipated that these enantiomers 
had the R-(−) and S-(+) absolute configurations, by anal-
ogy to earlier studies.[79] Recently, single-crystal X-ray crys-
tallographic studies have confirmed this (manuscript in 
preparation).’[51] Subsequent work has shown the prediction 
to be correct; however, it seems that the promised X-ray 
crystallography manuscript never manifested. The X-ray 
crystal structure of S-MDMA.HCl obtained in the current 
work is depicted in Fig. 2. As expected, aside from the 
configuration, the crystal structure of the enantiomer is 
identical (see Supplementary Fig. S1). 

The purity of both homochiral MDMA.HCl samples was 
first assessed by quantitative 1H NMR spectroscopy (Table 3) 
according to methodology outlined by the European 
Network of Forensic Science Institutes.[81] Subsequent 
assessment of the enantiopurity was attempted by enantio-
selective HPLC–UV at several wavelengths. However, for 
fairly concentrated (400–1000 μg/mL) samples of both 
R- and S-MDMA.HCl, traces of the opposite enantiomer 
(S and R, respectively) could not be reliably detected at 
all concentrations at any of the wavelengths assessed 
(Supplementary Fig. S2). 

Sensitivity was enhanced by using fluorometric detection 
(excitation 285 nm, emission 320 nm)[82] (Supplementary 
Fig. S3). Quantification of the trace enantiomeric impurity 
by HPLC is best achieved when the minor enantiomer elutes 
before the major,[83] and this order was achieved for the 
S-MDMA sample (Supplementary Fig. S3b). Fortunately, a 
recent study suggests that the disadvantages of a non-ideal 
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Scheme 5. Regioselectivity in nucleophilic ring-opening of 
N-tosylaziridine 22.[ 78] The wavy bond represents a single but 
undefined configuration.  Fig. 2. Representation of the X-ray crystal structure of S-MDMA 

hydrochloride. Displacement ellipsoids for non-H atoms are drawn at 
50% probability. Grey = C, white = H, blue = N, red = O. The crystal 
structure of the R-enantiomer (Supplementary Fig. S1) is identical 
except for absolute configuration. Crystallographic data have been 
deposited in the Cambridge Structural Database: CCDC 1825534 (S) 
and 1825511 (R). The X-ray crystal structure of racemic MDMA.HCl 
has been reported previously.[ 80]  
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elution order, as for the R-MDMA sample (Supplementary 
Fig. S3a), do not prevent our objective of assessing enantio-
purity to 0.1% accuracy.[84] 

To quantify the enantiomeric impurity in each sample, 
measurements were carried out for (±)-MDMA hydrochloride 
over the concentration range 0.1–20 μg/mL (n = 5) using 
fluorescence detection. Calibration curves using peak areas 
as a function of concentration were obtained for each enan-
tiomer from unweighted least-squares linear regression 
analysis of the data (Supplementary Fig. S4). Coefficients 
of determination (R2) were greater than 0.997 for both 
calibration curves. Limits of detection (LOD) and quantifi-
cation (LOQ) were estimated from signal-to-noise ratios.[85] 

Enantiopurities of both R- and S-MDMA were thus, 
unequivocally, shown to be >99.5% (Table 3). 

Conclusion 

A novel synthesis of R and S-MDMA, taking advantage of 
N-tosylaziridine chirons readily available from the chiral pool, 
was developed. The efficiency in terms of number of steps, 
overall yield and enantiopurity of the target amphetamines 
compare favourably with previously reported methods, with 
further gains possible through use of more easily removed 
aziridine-activating groups. Indeed, during our revisions of 
this manuscript, Sherwood and colleagues reported similar 
syntheses of the homochiral enantiomers of MDMA and the 
corresponding primary amine MDA (3,4-methylenedioxy- 
amphetamine) from N-Boc aziridines (Boc, tert-butoxy- 
carbonyl).[86] The methodology reported herein should be 
adaptable to the synthesis of other N-alkylamphetamines 
and related α-alkyl-substituted phenethylamines. 

The homochiral MDMA synthesised as described in this 
paper was investigated in non-human primate models of 
levodopa-induced dyskinesia in PD.[37] This study shed 
some light on the mechanism by which racemic MDMA alle-
viates major side effects of levodopa therapy. Specifically, the 
enantiomers work synergistically, with R-MDMA reducing 
severity of dyskinesia, while S-MDMA extends the therapeutic 
duration of levodopa. These insights have informed ongoing 
research into non-psychoactive MDMA analogues that 
improve the quality of levodopa therapy in PD animal 
models.[87–89] 

Experimental 

General 

All solvents were distilled prior to use and, where appropri-
ate, dried according to standard methods. K2CO3 was dried 
overnight in an oven at 140°C. Anhydrous reactions were 
performed using glassware that was dried in an oven at 
140°C, then cooled under argon. Sonication was achieved 
with a Soniclean 120T (50/60 Hz, 60 W). 

Flash chromatography and rapid silica filtration (RSF) 
were conducted using Merck silica gel 60 (63 200 μm). 
Thin-layer chromatography was conducted on Merck 
aluminium-supported silica sheets (silica gel 60 F254). 
Plates were visualised using UV light (254 nm) and amines 
were stained with ninhydrin. 

Melting points were determined using a Reichert hot-stage 
melting point apparatus. Specific rotations were measured 
with a PerkinElmer 141 polarimeter (1 mL, 10 cm path-
length). Infrared spectra were recorded on a PerkinElmer 
SpectrumOne FTIR spectrometer (4000–400 cm−1). 1H and  
13C NMR spectra were recorded in CDCl3 using Bruker 
ARX500 (500.1 MHz for 1H and 125.8 MHz for 13C), AV600 
(600.1 MHz for 1H and 150.9 MHz for 13C) or AM300 
(300 MHz for 1H) spectrometers. Chemical shifts are 
expressed in parts per million (ppm) relative to residual 
CHCl3 (1H, δ 7.26) or CDCl3 (13C, δ 77.16). Routine assign-
ments of 13C spectra were made with the assistance of DEPT 
135 and DEPT 90 experiments (DEPT, distortionless enhance-
ment by polarisation transfer). High-resolution mass spectra 
(HRMS) were recorded with a VG-Autospec spectrometer 
using electron impact (EI) or fast-atom bombardment (FAB) 
ionisation, as indicated. 

Enantioselective analytical HPLC was carried out on an 
Agilent 1200 Series HPLC instrument equipped with 
G1311A quaternary pump, G1315B diode-array detector 
(DAD) and G1321B fluorescence detector (FLD). Separation 
of enantiomers was performed on a Regis® amylose tris(3,5- 
dimethylphenylcarbamate) column (Reflect I-Amylose A, 
5 μM, 250 × 4.6 mm, Regis Technologies, Inc., IL, USA) with 
a flow rate of 1.0 mL/min and 20 μL injection volume. 
All samples were subjected to isocratic elution with a 
95:4.95:0.05 (v/v/v) n-hexane/EtOH/diethylamine mobile 
phase. UV detection was performed at 236, 254 and 280 nm; 

Table 3. Enantiopurities of R- and S-MDMA and related parameters and quantities.          

Q 1H NMR 
purityB (%) 

LOD 
(μg/mL) 

LOQ 
(μg/mL) 

MDMA conc. 
(μg/mL)C 

Enantiomeric impurity 
(μg/mL) 

Enantiopurity 
(%)   

R-MDMAA 97.7 0.035 0.12 391 0.62 99.8 

S-MDMAA 99.4 0.039 0.13 398 1.4 99.6 

Q, quantitative; LOD, limit of detection; LOQ, limit of quantification. 
ASample concentration 400 μg/mL. 
B1,3,5-Trimethoxybenzene was used as the internal standard. 
CConcentration of both enantiomers in the sample; calculated by factoring in wt-% purity (determined by Q 1H NMR) of each sample.  
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fluorescence detection was performed at an excitation wave-
length of 285 nm and an emission wavelength of 320 nm.[82] 

Synthesis 

BrO

O
1

2

3
5

6

7

4

5-Bromo-1,3-benzodioxole (18)[62] 

A solution of Br2 (5.1 mL, 0.10 mol) in DCM (100 mL) was 
added dropwise over 6 h to a stirred solution of 1,3- 
benzodioxole (11 mL, 0.10 mol) in DCM (150 mL) at 0°C. 
The mixture was allowed to warm to room temperature and 
stirring was continued overnight, after which time GC-MS 
analysis showed the starting material to have been consumed. 
The reaction mixture was diluted with sat. aq. Na2S2O7 
(100 mL) and stirred for 10 min, the phases were separated 
and the aqueous phase was extracted with DCM (3 × 100 mL). 
The extract was washed with water (100 mL) and brine 
(100 mL), dried and concentrated under vacuum. The residue 
was distilled under reduced pressure to afford the bromide 18 
as a pale yellow oil (18 g, 89%); bp 98–100°C at 3 mm Hg 
(lit.[90] 85°C at 1 mm Hg). 1H NMR (600 MHz) δ 6.96–6.93 
(m, 2H, H4/H7), 6.69 (m, 1H, H6), 5.97 (s, 2H, H2) ppm. The  
1H NMR spectrum matched the reported data.[91] 
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(R)-N-Tosyl-3,4-methylenedioxymethamphet- 
amine (R20) 

Mg flakes (2.44 g, 100 mmol) were stirred under argon over-
night. THF (40 mL) was added to the blackened Mg, followed 
by dropwise addition of a solution of bromide 18 (4.02 g, 
20.0 mmol) in anhydrous THF (20 mL). Initiation of Grignard 
reagent formation was indicated by warming of the reaction 
vessel and darkening of the solution. The reaction mixture was 
stirred for 4 h at rt, then 1 h at 45°C. The suspension was 
allowed to settle; the supernatant was cannulated from the 
remaining Mg, and was then cooled to −30°C. CuI (0.58 g, 
3.0 mmol) was added and the pale yellow mixture was stirred 
for 45 min, then cooled to −78°C, and treated dropwise with a 
solution of aziridine R19[60,61] (2.113, 10.00 mmol) in THF 
(40 mL). The reaction mixture was allowed to warm gradually 
to rt and stirring was continued overnight. The reaction mixture 
was diluted with sat. aq. NH4Cl (120 mL) and concentrated 
under reduced pressure. The aqueous residue was extracted 
with Et2O (3 × 40 mL) and the extract was washed with 
brine (40 mL), dried and evaporated. The residue was subjected 
to flash chromatography. Elution with 1:7 EtOAc/petrol 
afforded the sulfonamide R20 as a colourless gum (3.10 g, 
93%), which solidified to give an amorphous, colourless solid 

over a period of months; mp 59–63°C. [ ]D
20 +6.1° (c 1.2, 

CHCl3). IR νmax (film, DCM) 3286 (N–H), 1490, 1248, 1159, 
1039 cm−1. 1H NMR (600 MHz) δ 7.62–7.59 (m (pseudo d), 
2H, H2′/6′), 7.25–7.22 (m (pseudo d), 2H, H3′/5′), 6.65 
(d, J = 7.8 Hz, 1H, H5′), 6.46 (dd, J = 7.9, 1.7 Hz, 1H, H6′), 
6.42 (d, J = 1.7 Hz, 1H, H2′), 5.92 (d, J = 1.4 Hz, 1H, 
O2CH2a), 5.91 (d, J = 1.4 Hz, 1H, O2CH2b), 4.24 (br d, 
J = 7.1 Hz, 1H, NH), 3.47–3.40 (m, 1H, H2), 2.59 (dd, 
J = 13.8, 6.3 Hz, 1H, H1a), 2.55 (dd, J = 13.8, 6.9 Hz, 1H, 
H1b), 2.42 (s, 3H, 4″–CH3), 1.11 (d, J = 6.5 Hz, 3H, H3).  
13C NMR (150.9 MHz) δ 147.8 (ArO), 146.5 (ArO), 143.3 (Ar), 
137.6 (Ar), 130.9 (C1′), 129.7 (2 × ArH), 127.1 (2 × ArH), 
122.5 (ArH), 109.6 (ArH), 108.4 (ArH), 101.1 (CH2O2), 
51.1 (C2), 43.2 (C1), 21.64 (CH3), 21.63 (CH3). HRMS (EI): 
m/z calcd for C17H19O4S˙+ [M]˙+ 333.1029; observed 333.1028. 
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(R)-N-Methyl-N-tosyl-3,4-methylenedioxymeth- 
amphetamine (R21) 

K2CO3 (3.32 g, 24.0 mmol) and MeI (1.0 mL, 16 mmol) were 
added to a solution of sulfonamide R20 (2.66 g, 8.00 mmol) in 
anhydrous DMF (25 mL) under argon. The mixture was stirred 
for 20 h, after which time TLC indicated the reaction was 
complete. The reaction mixture was diluted with water 
(250 mL) and extracted with Et2O (3 × 80 mL). The extract 
was washed with water (2 × 80 mL) and brine (80 mL), dried 
and evaporated, and the residue was subjected to flash chro-
matography. Elution with DCM gave R21 as a colourless gum 
(2.77 g, quant.). [ ]D

20 −36.8° (c 1.5, CHCl3). IR νmax (film, 
DCM) 3422, 1490, 1335, cm−1. 1H NMR (600 MHz) δ 
7.60–7.56 (m, 2H, H2″/6″), 7.25–7.21 (m, 2H, H3″/5″), 6.68 
(d, J = 7.9 Hz, H5′), 6.58 (d, J = 1.7 Hz, 1H, 2′), 6.55 (dd, 
J = 7.9, 1.7 Hz, 1H, H6′), 5.93 (AB, (pseudo d ‘J’ = 1.5 Hz), 
1H, CH2O2a), 5.92 (AB, (pseudo d ‘J’ = 1.5 Hz), 1H, CH2O2b), 
4.24–4.17 (m, 1H, H2), 2.74 (s, 3H, NCH3), 2.61 (dd, J = 13.6, 
6.5 Hz, 1H, H1′a), 2.49 (dd, J = 13.6, 8.3 Hz, 1H, H1′b), 2.40 
(s, 3H, 4″-CH3), 0.95 (d, J = 6.7 Hz, 3H, H3). 13C NMR 
(150.9 MHz) δ 147.7 (ArO), 146.3 (ArO), 143.0 (Ar), 137.2 
(Ar), 132.1 (C1′), 129.6 (2 × ArH), 127.2 (2 × ArH), 122.2 
(ArH), 109.5 (ArH), 108.3 (ArH), 101.0 (CH2O2), 54.6 (C2), 
40.8 (C1), 28.0 (NCH3), 21.6 (CH3), 17.0 (CH3). HRMS (EI): m/ 
z calcd for C18H21O4S˙+ [M]˙+ 347.1186; observed 347.1186. 
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(R)-3,4-Methylenedioxymethamphetamine 
(R-MDMA) 

Method A. A solution of sulfonamide R21 (2.72 g, 
7.80 mmol) in anhydrous THF (50 mL) was added to a 
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suspension of Mg powder (1.90 g, 78.0 mmol) in dry MeOH 
(100 mL) under argon. The suspension was sonicated for 1 h, 
during which time a colourless precipitate formed and the 
Mg was consumed. Additional Mg powder (0.95 g, 39 mmol) 
was added, and sonication was continued for 1 h. Most of 
the solvent was evaporated, and the residue was diluted 
with saturated NaHCO3 (100 mL) and extracted with Et2O 
(3 × 30 mL). The extract was washed with brine, dried and 
evaporated, and the reside subjected to RSF. Elution with 
48:1:1 Et2O/MeOH/NEt3 gave unreacted R21 as a colour-
less oil (1.42 g, 52%). Further elution afforded R-MDMA as 
a colourless oil (690 mg, 46%), [ ]D

23 −34.5° (c 1.1, CHCl3).  
1H NMR (600 MHz) δ 6.74 (d, J = 7.9 Hz, 1H, H5′), 6.67 (d, 
J = 1.7 Hz, 1H, H2′), 6.63 (dd, J = 7.9, 1.7 Hz, 1H, H6′), 
5.93 (s, 2H, CH2O2), 2.75–2.69 (m, 1H, H2), 2.61 (dd, J =  
13.5, 7.2 Hz, 1H, H1a), 2.54 (dd, J = 13.5, 6.2 Hz, 1H, 
H1b), 2.39 (s, 3H, NCH3), 1.58 (br s, 1H, NH + H2O), 
1.05 (d, J = 6.2 Hz, 3H, H3). 13C NMR (125.8 MHz) δ 
147.8 (ArO), 146.1 (ArO), 133.3 (C1′), 122.3 (ArH), 109.6 
(ArH), 108.3 (ArH), 101.0 (CH2O2), 56.6 (C2), 43.3 (C1), 
34.1 (NCH3), 19.8 (C3). HRMS (EI): m/z calcd for 
C18H21O4S˙+ [M]˙+ 193.1097; observed 193.1102. The 1H 
spectrum matched the data previously reported for the 
racemate.[49] 

Method B. A solution of the sulfonamide R21 (0.17 g, 
0.50 mmol), NaBH4 (0.19 g, 5.0 mmol) and 1,4-dimethoxy- 
benzene (0.28 g, 2.0 mmol) in 1:2 MeCN/EtOH (15 mL) in a 
quartz tube was irradiated at 254 nm in a Rayonet reactor 
for 5 h, after which time the reaction had stalled based on 
TLC analysis. The volatiles were evaporated and the residue 
was subjected to RSF. Elution with 25:73:2 EtOAc/petrol/ 
NEt3 yielded R-MDMA as a colourless oil (32 mg, 33%), 
[ ]D

23 −33.7° (c 1.0, CHCl3), identical in all other respects 
with the material described above. 
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(R)-3,4-Methylenedioxymethamphetamine 
hydrochloride (R-MDMA.HCl) 
R-MDMA was dissolved in excess methanolic HCl. The 

solution was evaporated under a stream of N2, and the solid 
residue was crystallised from iPrOH to afford R-MDMA.HCl 
as colourless shards, mp 185–186°C (lit.[51] 192–193°C 
(EtOH/Et2O)). [ ]D

23 −19.3° (c 1.1, H2O) (lit.[51] −17.5° 
(c 1, H2O)). 1H NMR (600 MHz, CDCl3) δ 9.64 (v br s, 2H, 
NH2), 6.75 (d, J = 7.9 Hz, 1H, H5′), 6.70 (d, J = 1.6 Hz, 
1H, H2′), 6.68 (dd, J = 7.9, 1.7 Hz, 1H, H6′), 5.94 
(AB (pseudo d ‘J’ = 1.5 Hz), 1H, CH2O2a), 5.94 
(AB (pseudo d ‘J’ = 1.5 Hz), 1H, CH2O2b), 3.37 (dd, 
J = 13.2, 4.2 Hz, 1H, H1a), 3.30–3.22 (m, 1H, H2), 2.77 
(dd, J = 13.2, 10.4 Hz, 1H, H1b), 2.69 (s, 3H, NCH3), 1.34 

(d, J = 6.5 Hz, 3H, H3). The 1H NMR spectrum matched the 
previously reported data.[51] 
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(S)-N-Tosyl-3,4-methylenedioxymeth- 
amphetamine (S20) 

Ring-opening as described for R20 from aziridine 
S19[60,61] (1.06 g, 5.02 mmol) afforded sulfonamide S20 as 
a colourless gum (1.62 g, 97%), [ ]D

20 −6.3° (c 1.3, CHCl3). 
HRMS (EI): m/z calcd for C17H19O4S˙+ [M]˙+ 333.1029; 
observed 333.1036. The IR, 1H and 13C NMR spectra were 
identical to those for the enantiomer R20. 
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(S)-N-Methyl-N-tosyl-3,4-methylenedioxymeth- 
amphetamine (S21) 

Methylation of sulfonamide S20 (1.50 g, 4.50 mmol) as 
described above for R21 afforded S21 as a colourless gum 
(1.54 g, 99%). [ ]D

20 +38.4° (c 1.2, CHCl3). HRMS (EI): m/z 
calcd for C18H21O4S˙+ [M]˙+ 347.1186; observed 347.1189. 
The IR, 1H and 13C NMR spectra were identical to those for 
the enantiomer R21. 
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(S)-3,4-Methylenedioxymethamphetamine 
(S-MDMA) 

Method A. Mg powder (485 mg, 20.0 mmol) was added 
to a solution of S21 (695 mg, 2.00 mmol) in dry MeOH 
(20 mL) under argon, and the suspension was sonicated for 
1 h, during which time a colourless precipitate formed, and the 
Mg was consumed. Additional Mg powder (485 mg, 
20.0 mmol) was added and sonication was continued for 1 h. 
The reaction mixture was diluted with sat. aq. NaHCO3 
(200 mL) and extracted with Et2O (3 × 60 mL). The extract 
was washed with brine, dried and evaporated, and the residue 
was subjected to RSF. Elution with 25:73:2 EtOAc/petrol/NEt3 
afforded unreacted S21 as a colourless oil (217 mg, 56%). 
Further elution gave S-MDMA as a colourless oil (169 mg, 
44%), [ ]D

23 +33.1° (c 1.2, CHCl3). HRMS (EI): m/z calcd 
for C18H21O4S˙+ [M]˙+ 193.1097; observed 193.1096. The  
1H and 13C NMR spectra were identical to those for R-MDMA. 

Method B. A solution of S21 (0.87 g, 2.5 mmol) in THF 
(10 mL) was added to a suspension of Mg powder (0.61 g, 
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25 mmol) in dry MeOH (15 mL) under argon, and the sus-
pension was sonicated for 1 h. Additional Mg powder 
(0.61 g, 25 mmol, 2 h) was added and sonication was con-
tinued for 2 h. Workup as described for Method A was 
followed by flash chromatography. Elution with Et2O then 
98:2 Et2O/NEt3 afforded unreacted S21 as a colourless oil 
(0.27 g, 31%). Further elution gave S-MDMA as a colourless 
oil (0.26 g, 54%), [ ]D

23 +32.7° (c 1.0, CHCl3), identical in 
all other respects to its enantiomer (R)-MDMA. 

Method C. DME (50 mL) was added to a mixture of 
naphthalene (1.28 g, 10.0 mmol) and Na pieces (230 mg, 
10.0 mmol) under argon. The surface of the Na immediately 
turned dark green. The reaction mixture was stirred for 2 h 
during which time the green colour darkened and persisted. 
The sodium naphthalide solution so formed was added drop-
wise to a solution of S21 (1.40 g, 4.03 mmol) in DME (30 mL) 
at −78°C. A persistent green endpoint was not discernible. 
The reaction mixture was stirred at −78°C for 1 h and at rt for 
2 h, before being quenched with EtOH (10 mL) and evapo-
rated. The solid residue was dissolved in Et2O, and the solu-
tion was washed with brine, dried and evaporated. The 
residue was subjected to RSF. Elution with petrol afforded 
naphthalene. Further elution with 1:3 EtOAc/petrol gave 
unreacted S21 as a colourless oil. Further elution with 
25:73:2 EtOAc/petrol/NEt3 afforded S-MDMA as a colourless 
oil (392 mg, 50%), [ ]D

23 +33.0° (c 1.0, CHCl3) identical in all 
other respects to its enantiomer R-MDMA. 
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(S)-3,4-Methylenedioxymethamphetamine 
hydrochloride (S-MDMA.HCl) 

The hydrochloride was prepared as described above for 
R-MDMA, affording S-MDMA.HCl as colourless crystals; 
mp 184–186.0°C (MeOH/Et2O) (lit.[51] 192–193°C 
(EtOH/Et2O)). [ ]D

23 +18.3° (c 1.0, H2O) (lit.[51] +17.43° 
(c 1, H2O)), identical in all respects with its enantiomer 
R-MDMA.HCl. 
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N-Tosyl-2-phenyl-2-(3,4-methylenedioxyphenyl) 
ethylamine (24) 

CuI (57 mg, 0.30 mmol) was added to a stirred solution of 
Grignard reagent (prepared as described above for R20 from 
5-bromobenzodioxole 18 (402 mg, 2.00 mmol)) in anhy-
drous THF (3 mL) at −78°C under argon. After 2 h, a 

solution of aziridine S22 (287 mg, 1.05 mmol) in anhydrous 
THF (5 mL) was added dropwise to the reaction mixture and 
stirring was continued for 2 h, whereupon a brown solution 
formed. The reaction mixture was gradually warmed to 
−10°C over a period of 4 h, held at this temperature for 
30 min, then quenched with saturated aqueous NH4Cl 
(30 mL) and extracted with Et2O (3 × 30 mL). The extract 
was washed with water (30 mL) and brine (30 mL), dried 
and evaporated. The brown residue was subjected to flash 
chromatography. Elution with 1:9 EtOAc/petrol afforded 
slightly impure 24 as a colourless gum that crystallised 
from MeOH/H2O to give 24 as fine colourless flakes 
(189 mg, 46%); mp 115–116°C. Rf (1:9 EtOAc/petrol) 
0.15. IR (KBr) νmax cm−1: 3202, 1248, 1159, 1038. 
[α]D  4.3° (c 1.50, CHCl3). 1H NMR (500 MHz) δ 7.70–7.66 
(m, 2H, H2‴/H6‴), 7.33–7.29 (m, 2H, H3‴/H5‴), 
7.29–7.24 (m, 2H, H3″/H5″ + CHCl3), 7.23–7.19 (m, 1H, 
H4″), 7.09–7.06 (m, 2H, H2″/H6″), 6.71 (d, J = 8.0 Hz, 1H, 
H5′), 6.57 (ddd, J = 8.0, 1.8, 0.4 Hz, 1H, H6′), 6.53 
(d, J = 1.8 Hz, 1H, H2′), 5.91 (q [AB], J = 1.4 Hz, 2H, 
CH2O2), 4.29 (dd (app. t), J = 6.2 Hz, 1H, NH), 3.97 (dd 
(app. t), J = 7.9 Hz, 1H, H2), 3.54–3.43 (m, 2H, H1), 2.45 
(s, 3H, CH3) ppm. 13C NMR (125 MHz) δ 148.2 (ArO), 146.8 
(ArO), 143.7 (Ar), 140.9 (Ar), 136.9 (Ar), 134.7 (Ar), 
129.9 (2 × ArH), 129.0 (2 × ArH), 127.9 (2 × ArH), 
127.31 (2 × ArH), 127.30, 121.2 (ArH), 108.6 (ArH), 
108.4 (ArH), 101.2 (CH2O2), 50.4 (C1 or C2), 47.4 (C1 or 
C2), 21.7 (CH3). HRMS (FAB): m/z calcd for C22H21NO4S˙+ 

[M]˙+ 395.1186; observed 395.1173. 1H NMR spectroscopic 
assignments were made with the assistance of D2O exchange 
and COSY (correlation spectroscopy) experiments. 

Supplementary material 

Supplementary material is available online. 
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