DYSOXYLONENE*

By R. O. Hellyer \dagger and H. H. G. McKern \dagger

The volatile wood-oil of Dysoxylon fraseranum Benth. ("rosewood") was first examined by Penfold (1927) who found it to consist predominantly of sesquiterpenes. Two oils distilled from trees from the Chillingham district, N.S.W., were found to contain a large proportion of a fraction yielding crystalline dihydrochlorides, m.p. $118-119^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}^{20}+41 \cdot 1$ and $-43 \cdot 65^{\circ}$. However, an oil from the Comboyne district was characterized by giving an opticallyinactive dihydrochloride, m.p. $108-109^{\circ} \mathrm{C}$. The optically-inactive cadinenetype sesquiterpene regenerated from this derivative had $b_{10} 136-137^{\circ} \mathrm{C}$; d_{15} 0.9236 ; $n_{\mathrm{D}}^{20} 1.5063$, and was named "dysoxylonene".

We have examined a freshly-distilled oil of this species from Comboyne and also obtained an optically-inactive white crystalline dihydrochloride, but of m.p. $105-106{ }^{\circ} \mathrm{C}$ (Found : $\mathrm{C}, 64 \cdot 7 ; \mathrm{H}, 9 \cdot 5 ; \mathrm{Cl}, 25 \cdot 8 \%$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{Cl}_{2}$: C, $65 \cdot 0 ; \mathrm{H}, 9 \cdot 4 ; \mathrm{Cl}, 25 \cdot 6 \%$). Digestion with glacial acetic acid and sodium acetate on the steam-bath resulted in the formation of an optically-inactive sesquiterpene, $b_{10} 135-136{ }^{\circ} \mathrm{C} ; d_{15}^{15} 0 \cdot 9247 ; n_{\mathrm{D}}^{20} 1 \cdot 5069$. The infra-red spectrum of the dysoxylonene dihydrochloride was found to be identical with that of the dihydrochloride, m.p. $119^{\circ} \mathrm{C}$, prepared from a $(+)$-cadinene from the volatile leaf-oil of Eucalyptus maculata Hook.

Kafuku, Ikeda, and Hata (1935) isolated from Lantana camara L. a cadinenelike sesquiterpene, micranene, yielding a dihydrochloride, m.p. $105 \cdot 5-106.5^{\circ} \mathrm{C}$, and which was shown by Sebe (1940) to be (\pm)-cadinene. Hence, both micranene and dysoxylonene are optically-inactive cadinenes, and the use of these trivial names should be discontinued.

References *

Kafuku, K., Iteda, T., and Hata, C. (1935).-J. Chem. Soc. Japan 56 : 1184. Penfold, A. R. (1927).-J. Proc. Roy. Soc. N.S.W. 61 : 337.
Sebe, Y. (1940).-J. Chem. Soc. Japan 61: 1269.

[^0]
[^0]: * Manuscript received July 2, 1956.
 \dagger Museum of Applied Arts and Sciences, Sydney.

