SHORT COMMUNICATIONS

SOLVENT SHIFT OF C=O STRETCHING FREQUENCY AND POLARIZABILITY*

By R. J. W. LE FÈVRE†

It has recently been shown (Armstrong et al. 1958) (a) that the effect of change of state on apparent molecular polarizability can be predicted by equations of the type

 $b_i^s/b_i^v = 1 - (n_1^2 - 1)(0.333 - k_i)/(n_1^2 + 2), \tag{1}$

where b_i^s and b_i^v denote the polarizabilities, along the direction i, of a molecule respectively as a solute and as a vapour, k_i is an anisotropy factor for the molecule, and n_1 is the refractive index of the solvent; all b's are herein quoted in 10^{-23} c.c. units; and (b) that stretching frequencies of bonds can be empirically connected (Le Fèvre 1959) with longitudinal polarizabilities by relations such as

$$\nu_{XY} = (9273/r_{XY}^2)/(b_L^{XY}/\overline{M})^{\frac{1}{8}} - 254,$$
 (2)

where r_{XY} is the inter-centre distance in Å units for the bond XY, \overline{M} is the reduced mass, and b_L^{XY} is the longitudinal polarizability of XY; ν_{XY} is in cm⁻¹. In combination, (1) and (2) should allow solvent shifts of stretching frequencies to be calculated a priori; this possibility has now been examined with the data for $\nu_{C=0}$ in acetone listed by Bellamy and Williams (1959).

In Armstrong et al.'s (1958) paper the factors k_i were approximations estimated from scale drawings; however since the principal polarizabilities of acetone are known (Le Fèvre and Rao 1947) to be $b_1=0.701$, $b_2=0.684$, and $b_3=0.482$ in carbon tetrachloride, k_1 is here obtained as 0.279 from the ratios b_3/b_1 and b_2/b_1 in conjunction with the graphs published by Osborn (1945). For acetone in carbon tetrachloride therefore $b_1^s/b_1^v=0.9853$; if the changes with medium of b_1 for acetone are assumed to be changes of $b_L^{C=0}$, then (since $b_L^{C=0}$ deduced from measurements by Le Fèvre, Le Fèvre, and Rao (1959) on solutions in carbon tetrachloride is 0.230_5), $(b_L^{C=0})^v$ appears as 0.234. Insertion of this value in equation (2) gives $(v_{C=0})^v$ as 1737.5 cm⁻¹ if $r_{C=0}$ is 1.22_9 Å, whilst the v of 1719 cm⁻¹ recorded for acetone in carbon tetrachloride requires an $r_{C=0}$ of 1.23_{15} Å; both these are within the limits 1.22 ± 0.03 (quoted in Chem. Soc. Spec. Publ., No. 11, 1958, M 150); the larger $r_{C=0}$ has been used in calculating $Q=(1/r_{C=0}^2)(b_L^{C=0}/\overline{M})^{\frac{1}{2}}$ from the apparent longitudinal polarizabilities of the C=O group in the solutions, these in turn being obtained via (1) as $0.234b_3^8/b_1^v$.

^{*} Manuscript received December 13, 1960.

[†] School of Chemistry, University of Sydney.

Results are in Table 1 (4th column). In an attempt to improve the ν 's forecast for the more polar solvents, equation (1) has been modified to equations (1a) or (1b) respectively by substituting $(n^2-1)/(n^2+2)$ by $(\varepsilon-1)/(\varepsilon+2)$ or by $(\varepsilon-1)/(2\varepsilon+1)$; columns 5 and 6 show the effects of such changes. (Refractive indexes and dielectric constants are from Timmermans 1950, or Maryott and Smith 1951.)

Table $\,1\,$ calculated and observed carbonyl stretching frequencies for acetone in $28\,$ solvents

Solvent	$n_{ m D}^{25}$	€25	ν _{C:0} via (1)	ν _C : ο via (1a)	v _{C : О} via (1 <i>b</i>)	$(v_{C=O})s_{obs}$.
n-C ₆ H ₁₄	$1 \cdot 3722$	1.882	1720	1721	1723	1723 · 5
Cyclo-C ₆ H ₁₂	$1\cdot 4236$	$2 \cdot 015$	1720	1720	1722	1723
Et ₂ O	$1 \cdot 3527$	$4 \cdot 235$	1721	1710	$1717 \cdot 5$	1721
$(n-C_4H_9)_2O$	$1 \cdot 3935$	$3 \cdot 06$	1720	1715	1719	1721
Et ₃ N	$1 \cdot 3983$	$2 \cdot 42$	1720	1718	1720	1720
C ₂ Cl ₄	$1 \cdot 5002$	$2 \cdot 30$	1718	1918 5	1721	1720
CCl ₄	$1\cdot 4575$	$2 \cdot 227$	1719	1719	1721	1719
C_6H_5Me	$1 \cdot 4940_{5}$	$2 \cdot 379$	1718	1718	1721	1719
$1,2,4-C_6H_3Me_3$	$1 \cdot 5025$	$2 \cdot 42 (17^{\circ})$	1718	1718	1720	1719
CS ₂	$1 \cdot 6243$	$2 \cdot 6246$	1716	$1716 \cdot 5$	1720	$1717\cdot 5$
C ₆ H ₆	$1\cdot 4973$	$2 \cdot 2725$	1718	1718	1721	1717
Dioxan	$1 \cdot 4202$	$2 \cdot 209$	1719	1719	1721	$1715\cdot 5$
Mel	$1 \cdot 5285$	$6 \cdot 86$	1718	1705	1715	1715
MeCN	$1\cdot3415_5$	$36 \cdot 7$	1721	1696	1712	1715
Me ₂ CO	$1 \cdot 3566$	$20 \cdot 70$	1721	1698	1712	$1714 \cdot 5$
$C_2H_4Cl_2$	$1\cdot 4425$	$10 \cdot 36$	1719	1702	1714	1714
C_5H_5N	$1 \cdot 5074$	$12 \cdot 01$	1718	1701	1710	1713
$C_2H_4Br_2$	$1 \cdot 5358$	$4 \cdot 78$	1718	1709	1715	1713
CH ₂ Cl ₂	1.4216	$8 \cdot 90$	1720	1703	1714	1713
MeNO ₂	1.3794	$36 \cdot 67$	1720	1696	1712	1712
CHCl ₃	$1 \cdot 4430$	$4 \cdot 724$	1719	1709	1716	1712
CH_2Br_2	$1 \cdot 5370$	$7 \cdot 23$	1718	1704	1715	1711
$C_2H_2Cl_4$	$1 \cdot 4917$	8 · 20 (20°)	1718	1704	1714	1709
CHBr ₃	$1 \cdot 5949$	$4 \cdot 337$	1716	1710	1717	1708
CH_2I_2	$1 \cdot 7379$	$5 \cdot 32$	1713	1708	1716	1707
Pyrrole	$1 \cdot 503$	7·48 (18°)	1718	1705	1715	1706
$C_6H_5NH_2$	$1 \cdot 584$	$6 \cdot 77$	1717	1704	1714	1703
MeOH	$1 \cdot 3267$	32 · 63	1721	1696	1712	$\begin{cases} 1721 \text{ sh,} \\ 1708 \end{cases}$

To cover adequately the observed 28 frequencies, the equations need to yield predictions ranging from $1723 \cdot 5$ to 1703 cm⁻¹, or—if the three solvents (pyrrole, aniline, and methanol) be excepted, in which H-bonding with C=O may occurfrom $1723 \cdot 5$ to 1707 cm⁻¹. Equation (1) is seen to provide a range over the remaining 25 cases which is insufficient, and (1a) one which is excessive. Equation (1b) fits the experimental data best, the algebraic sums of $\nu_{\text{calc.}} - \nu_{\text{obs.}}$ being $+73 \cdot 5$ for (1), -146 for (1a), and +42 cm⁻² for (1b). With (1b), agreement is worst with CHBr₃ and CH₂I₂; incipient compound formation between acetone and chloroform or bromoform, as suspected by Glasstone (1937) during dielectric

polarization measurements, are possibly responsible for the low $\nu_{\rm obs}$. However, it is a consequence of the present treatment that $\nu_{\rm CO}$ should shift with concentration, as ε_{12} varies, and $(\nu_{\rm CO})^s$ properly requires an extrapolation to infinite dilution. Between different observers (Hartwell, Richards, and Thompson 1948; Bayliss, Cole, and Little 1955; Bellamy and Williams 1959), differences of 4–6 cm⁻¹ are sometimes found. Equation (1b) will be tested on other solute ketones when their principal polarizabilities become available.

References

Armstrong, R. S., Aroney, M., Le Fèvre, C. G., Le Fèvre, R. J. W., and Smith, M. R. (1958).— J. Chem. Soc. 1958: 1474.

BAYLISS, N. S., COLE, A. R. H., and LITTLE, L. H. (1955).—Aust. J. Chem. 8: 26.

Bellamy, L. J., and Williams, R. L. (1959).—Trans. Faraday Soc. 55: 14.

GLASSTONE, S. (1937).—Trans. Faraday Soc. 33: 200.

HARTWELL, E. J., RICHARDS, R. E., and THOMPSON, H. W. (1948).—J. Chem. Soc. 1948: 1436.

LE FÈVRE, R. J. W. (1959).—Proc. Chem. Soc. 1959: 363.

LE FÈVRE, C. G., LE FÈVRE, R. J. W., and RAO, B. P. (1959).—J. Chem. Soc. 1959: 2340.

LE FÈVRE, R. J. W., and RAO, B. P. (1957).—J. Chem. Soc. 1957: 3644.

MARYOTT, A. A., and SMITH, E. R. (1951).—Table of dielectric-constants of pure liquids. Nat. Bur. Stand. Circ. No. 514 (issued Aug. 1951).

OSBORN, J. A. (1945).—Phys. Rev. 62: 351.

Timmermans, J. (1950).—" Physico-chemical Constants of Pure Organic Compounds." (Elsevier Publishing Co.: New York.)