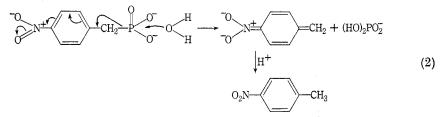
ORGANOPHOSPHORUS COMPOUNDS*


III. THE DECOMPOSITION OF p-NITROBENZYLPHOSPHONIC ACID IN ALKALI^{\dagger}

By A. MEISTERS[‡] and J. M. SWAN[‡]

In Part I of this series,¹ it was shown that 2-chloroalkylphosphonic acids decompose rapidly in neutral or alkaline solution giving an alk-1-ene and chloride and phosphate ions, and the mechanism shown in equation (1) was suggested.

$$\operatorname{RCH}_{CH_2} \xrightarrow{O^-} O \xrightarrow{H} \operatorname{RCH}_{H^-} \operatorname{RCH}_{2^+} + \operatorname{CI}_{1^-} + (\operatorname{HO})_2 \operatorname{PO}_2^-$$
(1)

On the basis of this mode of decomposition, the 2-chloroalkylphosphonic acids were developed as phosphorylating agents for alcohols and phenols.¹ It seemed possible that p-nitrobenzylphosphonic acid² might also decompose in alkali with fission of a carbon-phosphorus bond (eqn. (2)) and might likewise be a potential phosphorylating agent.

The expected decomposition was in fact observed, but occurred only at a slow rate. When the acid was heated at 72°C in a five-fold excess of 0.002 sodium hydroxide, the extent of decomposition was 25% after 3 hr and around 90% after 72 hr. A similar rate was observed for decomposition by 0.1 sodium hydroxide. *p*-Nitrotoluene was isolated from the reaction, together with traces of 1,2-di(*p*-nitrophenyl)ethane, probably formed by aerial oxidation of *p*-nitrotoluene.³⁻⁵

* Manuscript received March 14, 1963.

[†] For Part II of this series see reference 6.

[‡] Division of Organic Chemistry, C.S.I.R.O. Chemical Research Laboratories, Melbourne.

¹ Maynard, Judith A., and Swan, J. M. (1963).—Aust. J. Chem. 16: 596.

² Kosolapoff, G. M. (1949).-J. Amer. Chem. Soc. 71: 1876.

³ Fuson, R. C., and House, H. O. (1953).-J. Amer. Chem. Soc. 75: 1325.

⁴ Yohe, G. R., Hill, D. R., Dunbar, J. E., and Scheidt, F. M. (1953).—J. Amer. Chem. Soc. **75**: 2688.

⁵ Tsuruta, T., Nagatomi, R., and Furukawa, J. (1952).—Bull. Inst. Chem. Res. Kyoto Univ. **30**: 47.

Aust. J. Chem., 1963, 16, 725-6

Both ethyl hydrogen p-nitrobenzylphosphonate, prepared by alkaline hydrolysis of the diethyl ester, and p'-chlorophenyl hydrogen p-nitrobenzylphosphonate, prepared from the acid by the dicyclohexylcarbodi-imide method⁶ were found to be stable to prolonged heating in alkali. An attempt to phosphorylate ethanol by heating a solution of p-nitrobenzylphosphonic acid in ethanol containing cyclohexylamine was unsuccessful, the acid being precipitated as its sparingly soluble cyclohexylammonium salt.

Experimental

p-Nitrobenzylphosphonic acid, m.p. 223-226°C, was prepared according to Kosolapoff² by nitration of diethyl benzylphosphonate followed by acid hydrolysis of the ethyl ester groups. Hydrolysis of the diester in ethanolic KOH gave *ethyl hydrogen* p-*nitrobenzylphosphonate*, m.p. 157.5-158.5°C (Found: C, 44.2; H, 5.0; N, 5.7; P, 12.6%). Calc. for C₉H₁₂NO₅P: C, 44.1; H, 4.9; N, 5.7; P, 12.6%). Addition of cyclohexylamine to a solution of *p*-nitrobenzylphosphonate, m.p. 260°C (decomp.) (Found: C, 49.3; H, 6.8; N, 8.7%. Calc. for C₁₃H₂₁N₂O₅P: C, 49.4; H, 6.7; N, 8.9%). The salt was sparingly soluble in ethanol and dissolved slowly in hot 5N H₂SO₄ to regenerate the free acid.

p'-Chlorophenyl Hydrogen p-Nitrobenzylphosphonate.—p-Chlorophenol (0.64 g; 5 mmoles), NN'-dicyclohexylcarbodi-imide ($4 \cdot 12$ g; 20 mmoles) and p-nitrobenzylphosphonic acid ($1 \cdot 08$ g; 5 mmoles) were dissolved in anhydrous pyridine (10 ml). The mixture became warm and NN'-dicyclohexylurea began to separate. The mixture was allowed to stand overnight and was then diluted withwater and allowed to stand for a further 24 hr. The urea was filtered off and the filtrate was acidified giving $1 \cdot 6$ g of p'-chlorophenyl hydrogen p-nitrobenzylphosphonate, m.p. $174-176^{\circ}$ C, after recrystallization from benzene-light petroleum or from acetone (Found: C, $47 \cdot 5$; H, $3 \cdot 4$; Cl, $11 \cdot 0$; N, $4 \cdot 3_{\odot}$. Calc. for $C_{13}H_{11}ClNO_5P$: C, $47 \cdot 6$; H, $3 \cdot 4$; Cl, $10 \cdot 8$; N, $4 \cdot 3_{\odot}$). The infrared spectrum in Nujol showed a broad and shallow peak at 2400-2600 cm⁻¹ (POH), and characteristic bands at 1545m (NO₂), 1355s (NO₂), 1230m (PO), and 1195m cm⁻¹ (POC aromatic).

Decomposition by Alkali.—A typical experiment was carried out as follows: the phosphonic acid or half-ester (0.02 mmole) was dissolved in 0.002 NaOH (100 ml) and the solution was heated at 72°C. Aliquots were removed at various times, cooled, extracted with iso-octane, and the extracts analysed spectroscopically. In iso-octane, p-nitrotoluene has λ_{\max} 264 m μ , $\epsilon = 12,250$. Concentration of appropriate extracts gave p-nitrotoluene, m.p. 50–51°C (lit.⁷ 51.4). In larger-scale experiments the aqueous phase became cloudy due to formation of small amounts of 1,2-di(p-nitrophenyl)ethane, identified by m.p. 178–181°C; (lit.⁴ gives m.p. 181–182°C) and by infrared spectrum.

⁶ Maynard, Judith A., and Swan, J. M. (1963).-Aust. J. Chem. 16: 609.

⁷ Holleman, A. F., Vermeulen, J., and De Moody, W. J. (1914).—Rec. Trav. Chim. Pays-Bas 33: 1.