THE DISPROPORTIONATION OF ZIRCONIUM TRICHLORIDE

By A. G. TURNBULL* and J. A. WATTS*

[Manuscript received May 28, 1963]

Summary

Equilibrium pressures of the reaction $2\operatorname{ZrCl}_3(c) \rightarrow \operatorname{ZrCl}_2(c) + \operatorname{ZrCl}_4(g)$ measured by a cooling curve modification of the dew-point technique are fitted over the range $613-723^{\circ}\kappa$, by the relation

 $\log_{10} p_{\rm mm} = -6246/T + 11 \cdot 632 \pm 0 \cdot 05$ (S.D.).

Derived thermochemical data are $\Delta H_{298} = 30 \cdot 1 \pm 0.5$ kcal and $\Delta S_{298} = 39 \cdot 1 \pm 1$ e.u., consistent with estimated $\Delta H_{f_{298}}$ ZrCl₃ = -186 kcal/mole and $\Delta H_{f_{298}}$ ZrCl₂ = -136 kcal/mole, S_{298} ZrCl₃ = 36 · 4 e.u. and S_{298} ZrCl₂ = 28 · 3 e.u.

INTRODUCTION

The trihalides of the Group IV and V metals have all been shown to disproportionate on heating, so that their entropy and enthalpy of formation may be found by a study of the equilibrium pressures of the volatile higher halides.

This assumes particular importance for zirconium and hafnium, which may be separated by selective disproportionation of the trichlorides.¹ From preparative studies it appears that $ZrCl_3$ becomes appreciably converted to $ZrCl_2$ and $ZrCl_4$ above 330° (Ruff and Walstein²), 300° (Newnham¹), or 450° (Larsen and Leddy³). The preparation of pure $ZrCl_3$ by atomic hydrogen reduction (Newnham and Watts⁴) has now enabled a quantitative study of its disproportionation.

Recently, Schläfer and Skoludek⁵ reported the equilibrium pressure of ZrBr₄ over ZrBr₃. Although equilibrium could only be reached from low pressures and some reaction with the glass vessel was suspected, the pressure-temperature relation appeared to be independent of solid-phase composition within the limits ZrBr₃ to ZrBr₂, indicating a simple two-phase solid. A similar study of TiCl₃ by Sanderson and MacWood⁶ indicated a two-phase solid in the composition range TiCl₃ to TiCl_{2.5}, but a single-phase solid solution in the range TiCl_{2.5} to TiCl₂. For TiBr₃ Hall and Blocher⁷ found solid solution limits of TiBr_{3.0} to TiBr_{2.9} at 450° and TiBr_{3.0} to TiBr_{2.0} above 600°. Finally, Schäfer and Dohmann⁸ have shown that the equilibrium pressure of NbCl₅ over niobium trichloride varies with composition in the range NbCl_{2.67} to NbCl_{3.13} at 355°, indicating again a single-phase region.

* Division of Mineral Chemistry, C.S.I.R.O. Chemical Research Laboratories, Melbourne.

¹ Newnham, I. E., J. Amer. Chem. Soc., 1957, 79, 20, 5415.

² Ruff, O., and Wallstein, R., Z. anorg. Chem., 1923, 128, 96.

³ Larsen, E. M., and Leddy, J. J., J. Amer. Chem. Soc., 1956, 78, 5983.

⁴ Newnham, I. E., and Watts, J. A., J. Amer. Chem. Soc., 1960, 82, 2133.

⁵ Schläfer, H. L., and Skoludek, H., Z. Electrochem., 1962, 66, 367.

⁶ Sanderson, B. S., and MacWood, G. E., J. Phys. Chem., 1956, 60, 316.

⁷ Hall, E. H., and Blocher, J. M., J. Phys. Chem., 1959, 63, 1525.

⁸ Schäfer, H., and Dohmann, K., Z. anorg. Chem., 1959, 300, 1.

Aust. J. Chem., 1963, 16, 947-53

It is probable that most of the Group IV and V lower halides are derived from the Cd(OH)₂-type structure. The dihalides consist of hexagonally close-packed arrays with metal atoms occupying alternate layers of octahedral holes, while systematic absence of a third of the metal atoms occurs in the trihalides, e.g. TiCl_{3.9} On this model, single phase non-stoicheiometric composition ranges due to random metal atom absences appear quite likely, although it is not obvious why such ranges should be found for Nb–Cl and Ti–Br only. Such metal absences are associated with very slight changes in lattice dimensions, so that very precise X-ray measurements are required to reveal them. In the present work, comparison of X-ray powder patterns of $ZrCl_{3.0}$ and $ZrCl_{2.67}$ was inconclusive, as also were the X-ray studies of ZrI_3 and $ZrI_{2.55}$ by Watt and Baker.¹⁰

Thus it was of interest to see whether disproportionation pressure studies revealed any single-phase compositions in the ZrCl₃–ZrCl₂ range.

EXPERIMENTAL

(a) Materials

Finely divided, black ZrCl₃ was prepared by atomic hydrogen reduction of low-hafnium ZrCl₄⁴ followed by vacuum removal of excess ZrCl₄, H₂, and HCl at 190° and 5×10^{-3} mmHg for 5–6 hr. Chemical analysis of the four samples used indicated a formula of ZrCl 3.0 ± 0.02 , and X-ray powder patterns revealed similar interplanar spacings to those reported by Larsen and Leddy.³

(b) Apparatus

The most successful method used was a cooling curve modification of the dew-point method (runs 1-3).

The sample was transferred in an argon-filled dry box (< 100 p.p.m. water and oxygen) to a long glass ampoule which was subsequently sealed under a vacuum of 10^{-3} mmHg. The other end of this ampoule was closed by a flattened Pt/Pt-13% Rh thermocouple junction (Fig. 1(*a*)). For a measurement, the temperature of the sample end of the ampoule was controlled to $\pm 0.5^{\circ}$ while the junction end was slowly cooled. The thermal e.m.f., partly compensated by a potentiometer, was recorded *v*. time. On reaching the saturation temperature corresponding to the ZrCl₄ pressure, condensation on the junction began, causing an inflection (Fig. 2(*b*)) or a thermal plateau (Fig. 2(*a*)) in the cooling curve. The lowest detectable pressure was 8 mmHg with a

⁹ Natta, G., Corradini, P., and Allegra, A., Atti Accad. Lincei, 1959, 26, 155. ¹⁰ Watt, G. W., and Baker, W. A., J. Inorg. Nucl. Chem., 1961, 22, 49.

20 J

junction area of 9 mm² and a cooling rate of $3 \cdot 8^{\circ}$ /min. Both dew point and sample thermocouples were checked against a calibrated Pt/Pt–Rh thermocouple, giving temperatures to within $\pm 0.5^{\circ}$, which corresponded to 0.2 mmHg at 290° and 12.5 mmHg at 420°. The ZrCl₄ pressures corresponding to measured dew-point temperatures were found from the vapour pressure relation of Palako, Ryon, and Kuhn¹¹

$$\log p_{\rm mm} = -5400/T + 11.766 \ (480-689^{\circ} \kappa). \tag{1}$$

The heat of sublimation of ZrCl_4 derived from this relation is $24 \cdot 7 \pm 0.3$ kcal/mole, which is in close agreement with measurements by Rogers¹² and by Rahlfs and Fisher¹³ by different methods.

Fig. 2.—Cooling curves.

Condensation on the thermocouple itself avoided the possibility of temperature lags across the glass bulbs often used in dew-point methods (see Kellogg, Howell, and Somers¹⁴). However, it was possible to use an ampoule containing a Kovar bulb (Fig. 1(b)) with the usual visual observation of deposition to check the cooling-curve method (run 4).

Preliminary work with a bismuth-tin manometer method revealed that traces of H_2 or HCl were slowly desorbed from $ZrCl_3$ made by atomic hydrogen reduction. The dew-point method enabled $ZrCl_4$ pressures to be measured independently of H_2 or HCl and possible small $ZrCl_3$

¹¹ Palako, A. A., Ryon, A. D., and Kuhn, D. W., J. Phys. Chem., 1958, 62, 319.

¹² Rogers, B. A. et al., U.S.A.E.C., 1949, ISC-45.

¹³ Rahlfs, O., and Fischer, W., Z. anorg. Chem., 1933, 211, 349.

¹⁴ Kellogg, H. H., Howell, L. T., and Sommers, R. C., U.S.A.E.C., 1956, NYO-3108.

pressures. Newnham¹ observed a slight black sublimate above 460° which may have been ZrCl₃, but this was not found up to 450° in the present work. Pressures of TiCl₃¹⁵ and TiBr₃⁷ are roughly 1/30 of their disproportionation pressures, indicating that ZrCl₃ vapour should have negligible effect on the observed condensation temperatures of ZrCl₄.

Four disproportionation pressures were also found by heating $ZrCl_3$ in an evacuated tube at fixed temperature for 48 hr and then quenching the $ZrCl_4$ at one end with a gas jet. The perfect gas law was used to find pressure from temperature, bulb volume, and the weight of $ZrCl_4$ found by chemical analysis.

Fig. 3.—Disproportionation pressure of ZrCl₃.

RESULTS

Pressures of $ZrCl_4$ measured over the range 8 to 1020 mmHg, corresponding to 290 to 450° sample temperatures, are shown in Figure 3. The majority of the points are fitted by the following least-squares relation, with a standard deviation in log

¹⁵ Farber, M., and Darnell, A. J., J. Phys. Chem., 1955, 59, 156.

 $p_{\rm mm}$ of 0.05,

$$\log_{10} p_{\rm mm} = -6.246/T + 11.632. \tag{2}$$

It is notable that this equation fits equally well the results from both dew-point methods and the independent quenching method.

On initially heating a ZrCl_3 sample, constant pressures were attained in 3–4 hr at temperatures up to 420°. On subsequent cooling, constant pressures which fell on the same equilibrium line were only attained after some 200 hr. However, below 350°, pressures were still falling at 0.05 mm/hr after 270 hr, and equilibrium could not be attained. Linear rate curves for the ZrCl_4 – ZrCl_2 reaction were obtained by plotting Δp^2 against time, as also found by Busol¹⁶ for the ZrI_4 –Zr reaction. The activation energy obtained was about 45 kcal/mole. This falls within the range of values found for diffusion in metal oxides, 30 to 100 kcal/mole¹⁷ in agreement with rate control by diffusion of Zr through the ZrCl₃ lattice. In comparison, Schläfer and Skoludek⁵ failed to attain ZrBr₄–ZrBr₂ equilibrium from higher pressures in times of 80 hr below 420°.

 $\begin{array}{c} \text{TABLE 1} \\ 2\text{ZrCl}_3(c) \rightleftharpoons \text{ZrCl}_2(c) + \text{ZrCl}_4(g) \\ \hline \end{array}$

Т (°к)	ΔG (kcal)	ΔH (kcal)	ΔS (cal/deg)	ΔC_p (cal/deg)
658	$6 \cdot 43 \pm 0 \cdot 3$	$28 \cdot 6 \pm 0 \cdot 3$	$33 \cdot 7 \pm 0 \cdot 6$	-6.7
298	$18 \cdot 45 \pm 0 \cdot 5$	$30 \cdot 1 \pm 0 \cdot 5$	$39 \cdot 1 \pm 1$	-6.9

In run 4, divergence from equation (2) was found above 440° , indicating a change in the solid phase from $\text{ZrCl}_3 + \text{ZrCl}_2$ to $\text{ZrCl}_2 + \text{Zr}$ when all the initial ZrCl_3 was disproportionated. The solid phases obtained by quenching at the end of runs 2 and 3, which used larger samples than run 4, were analysed as $\text{ZrCl}_{2.54}$ and $\text{ZrCl}_{2.80}$. Thus, since pressures over solid compositions from ZrCl_3 to ZrCl_2 fit a single equilibrium line, there appears to be only a single two-phase system over this composition range at the temperatures used.

DISCUSSION

The phase-rule considerations of Schläfer and Skoludek⁵ and the assumption of negligible pressures of $ZrCl_3$, $ZrCl_2$, and Cl_2 indicate that equation (2) must refer to the equilibrium

$$2\operatorname{ZrCl}_{3}(c) \rightleftharpoons \operatorname{ZrCl}_{2}(c) + \operatorname{ZrCl}_{4}(g)$$
(3)

Thermodynamic data for this reaction (Table 1) were derived from the following relations, assuming ZrCl_4 to be an ideal gas.

¹⁶ Busol, F. I., J. Phys. Chem. USSR, 1959, 4, 331, 779.

 17 Kubaschewski, O., and Hopkins, B. E., "Oxidation of Metals and Alloys." (Butterworths: London 1962.)

$$\Delta G_T = \mathbf{R} T \ln p \tag{4}$$

$$= \Delta H_T - T \Delta S_T \tag{5}$$

Values of ΔH_T and ΔS_T thus obtained for the average temperature, 658° κ , were corrected to 298° κ using an estimated ΔC_p for reaction (2). For ZrCl₃(c), C_p was estimated by substituting its estimated S_{298} into a linear relation between $C_{p,T}$ and

Reaction	ΔH_{298} (kcal)	ΔS_{298} (cal/deg)	Reference		
$2\mathrm{TiCl}_3 \rightarrow \mathrm{TiCl}_2 + \mathrm{TiCl}_4(\mathrm{g})$	$38 \cdot 6 \pm 0 \cdot 4$	$42 \cdot 5 \pm 1 \cdot 5$	6		
$2\mathrm{TiBr}_3 \rightarrow \mathrm{TiBr}_2 + \mathrm{TiBr}_4(g)$	$34 \cdot 8 \pm 3$	$39 \cdot 1 \pm 2$	7		
$2\mathrm{ZrCl}_3 \rightarrow \mathrm{ZrCl}_2 + \mathrm{ZrCl}_4(g)$	$30 \cdot 1 \pm 0 \cdot 5$	$39 \cdot 1 \pm 1$	Present work		
$2\mathrm{ZrBr}_3 \rightarrow \mathrm{ZrBr}_2 + \mathrm{ZrBr}_4(g)$	24 ± 2	31 ± 3	õ		
$2\mathrm{VCl}_3 \rightarrow \mathrm{VCl}_2 + \mathrm{VCl}_4(g)$	$33 \cdot 5 \pm 9$	$48 \cdot 6 \pm 5$	22		
$2VBr_3 \rightarrow VBr_2 + VBr_4(g)$	$40\cdot 8\pm 2$	$31\cdot5\pm1$	23		
$2NbCl_3 \rightarrow NbCl_2 + NbCl_4(g)$	$43 \cdot 4 \pm 10$	$42\cdot 6\pm 5$	24		

 TABLE 2

 THERMODYNAMICS OF DISPROPORTIONATION

 S_{298} found for TiCl₃, VCl₃, and UCl₃. For $ZrCl_2(c)$ and $ZrCl_4(g)$, estimates by Glassner¹⁸ and Kelley¹⁹ were used.

The observed $\Delta H_{298} = 30 \cdot 1 \pm 0.5$ kcal agrees, within expected errors, with $\Delta H_{298} = 36$ kcal calculated from $\Delta Hf_{298} \operatorname{ZrCl}_4(c) = -234 \cdot 7^{20}$ and recent estimates by Brewer²¹ of $\Delta Hf_{298} \operatorname{ZrCl}_3(c) = 186$ and $\Delta Hf_{298} \operatorname{ZrCl}_2(c) = -130$. It appears that

Compound	ΔH^{\bullet}_{298} (kcal)	S_{298}° . (cal/deg)	Cp (cal/deg)	Reference
7 Cl. (-)	224 7 1 0 4	14 5 1 0.5	91 09 9.01/772	
$ZrCl_4(c)$	-234.7 ± 0.4	44.5 ± 0.5	$31 \cdot 92 - 2 \cdot 91/T^2$	22
ZrCl ₄ (g)	$-206 \cdot 2 \pm 2$	86.5 ± 1.5	$25 \cdot 60 + 0 \cdot 16 imes 10^{-3}T' - 2 \cdot 04 imes 10^{5}/T^{2}$	19, 25
ZrCl ₃ (c)	-186 ± 5	$36 \cdot 4 \pm 2$	$23 \cdot 07 + 4 \cdot 45 imes 10^{-3}T$	Present work
$ZrCl_2(c)$	-136 ± 5	$28 \cdot 3 \pm 2$	$17 \cdot 3 + 4 \cdot 2 imes 10^{-3} T$	Present work

 TABLE 3

 THERMODYNAMIC PROPERTIES OF ZIRCONIUM CHLORIDES

¹⁸ Glassner, A., U.S.A.E.C., 1959, ANL-5750.

¹⁹ Kelley, K. K., Bull. U.S. Bur. Min. No. 584.

²⁰ Gross, P., Haymann, C., and Levi, D. L., Trans. Faraday Soc., 1957, 53, 1601.

²¹ Brewer, L., personal communication, 1962.

²² Kubaschewski, O., and Evans, E. L. I., "Metallurgical Thermochemistry." (Pergamon: London 1959.)

²³ McCarley, R. E., and Roddy, J. W., U.S.A.E.C., 1962, IS-500.

²⁴ Schäfer, H., and Kahlenberg, E., Z. anorg. Chem., 1960, 305, 291.

²⁵ Kelley, K. K., Bull. U.S. Bur. Min. No. 592.

Zr-Cl bond energies in the three solid zirconium chlorides are quite similar, so that the major part of ΔH_{298} is due to the sublimation heat of ZrCl₄ (28.5 kcal).²²

The observed $\Delta S_{298} = 39 \cdot 1 \pm 1$ e.u. is in close agreement with $\Delta S_{298} = 42\pm 5$ e.u. calculated from $S_{298}\text{ZrCl}_4(g) = 86 \cdot 5^{19}$, $S_{298}\text{ZrCl}_3(c) = 36 \cdot 4$, $S_{298}\text{ZrCl}_2(c) = 28 \cdot 3$ estimated from Latimer's rules.²² Once again, almost all of ΔS_{298} is due to the sub-limation entropy of ZrCl₄ (Table 3, 42 e.u.).

In Table 2, ΔH_{298} and ΔS_{298} are compared with values for analogous disproportionations, and it is seen that all values lie within relatively narrow limits, $\Delta H_{298} =$ 35 ± 10 kcal and $\Delta S_{298} = 40\pm10$ e.u. Also ΔH_{298} and ΔS_{298} values for the chlorides of zirconium and titanium are greater than for the bromides, in agreement with the similar chemical behaviour. The thermochemical properties of zirconium chlorides most consistent with this and other work are collected in Table 3.

Acknowledgments

The authors are grateful to Professor L. Brewer for his estimates of thermodynamic data.