RE-EXAMINATION OF THE AZO COMPOUND FORMED IN THE REACTION BETWEEN N-SULPHINYLANILINE AND p-TOLYLHYDROXYLAMINE*

By G. E. LEWIS[†] and M. A. G. OSMAN[†]

It has been claimed by Michaelis and Petou¹ that the azo-compound formed in the reaction between N-sulphinylaniline (thionylaniline) and p-tolylhydroxylamine is 2,4'-azotoluene. It has now been shown that this is incorrect and that the product is *trans*-4-methylazobenzene.

Careful repetition of the reaction as described by Michaelis and Petou yielded only one azo-compound, m.p. $70-71\cdot5^{\circ}$ (lit.¹ 68–72°). The melting point was depressed to the range of $31-39^{\circ}$ on admixture with either *cis*- or *trans*-2,4'-azotoluene, both of which have been prepared by unambiguous methods. The product, m.p. $70-71\cdot5^{\circ}$, was identified as *trans*-4-methylazobenzene by comparison with an authentic sample.²

Experimental

Identification of the Product from the Reaction of N-Sulphinylaniline with p-Tolylhydroxylamine.—The reaction was carried out exactly as previously described.¹ The product after chromatography in light petroleum solution on alumina and final crystallization from ethanol yielded orange plates, m.p. 70–71.5° (Found: N, $14 \cdot 1\%$. Calc. for $C_{13}H_{12}N_2$: N, $14 \cdot 3\%$). No depression of melting point was observed following admixture with an authentic sample of *trans*.4-methylazobenzene available from previous work,² and the infrared absorption spectra of the two samples in carbon tetrachloride solution were found to be identical.

trans- and cis-2,4'-Azotoluene.—A solution of p-toluidine (2.65 g) in glacial acetic acid (3 ml) was added to a solution of o-nitrosotoluene (3 g) in the same solvent (12 ml) and the mixture allowed to stand overnight. Dilution with a large excess of water then caused precipitation of an orange-brown product which was extracted with light petroleum. The extract was washed free of acetic acid, dried (anhydrous sodium sulphate), and finally passed through a column of alumina. The solid material obtained after evaporation of the solvent was recrystallized from methanol. trans-2,4'-Azotoluene was thus obtained as red-orange leaflets, m.p. $51-52^{\circ}$ (Found: C, $79\cdot7$; H, $6\cdot8$; N, $13\cdot3^{\circ}$). Calc. for $C_{14}H_{14}N_2$: C, $80\cdot0$; H, $6\cdot7$; N, $13\cdot3^{\circ}$). A portion of the pure trans-compound was photochemically isomerized by the procedure used by Hartley³ for the preparation of cis-azobenzene. After recrystallization from light petroleum at -15° cis-2,4'-azotoluene was obtained as red-orange platelets, m.p. $61-62^{\circ}$ (Found: C, $80\cdot2$; H, $6\cdot6$; N, $13\cdot2^{\circ}$). Calc. for $C_{14}H_{14}N_2$: C, $80\cdot0$; H, $6\cdot7$; N, $13\cdot3^{\circ}$).

Acknowledgment is made to the U.N.E.S.C.O. Technical Assistance Programme for the award of a Fellowship to one of us (M.A.G.O.) and to the Australian Microanalytical Service, Melbourne, for the microanalyses.

- * Manuscript received January 20, 1964.
- † Department of Organic Chemistry, University of Adelaide.
- ¹ Michaelis, A., and Petou, K., Ber. dtsch. chem. Ges., 1898, 31, 984.
- ² Badger, G. M., Drewer, R. J., and Lewis, G. E., Aust. J. Chem., 1963, 16, 1042.
- ³ Hartley, G. S., J. Chem. Soc., 1938, 633.

Aust. J. Chem., 1964, 17, 498