SHORT COMMUNICATIONS

FIVE-COORDINATED IRON(II)*

By D. J. ROBINSON[†] and C. H. L. KENNARD[†]

Using X-ray powder diffraction, it has been shown that dichloro-2,2',2"terpyridineiron(II) is isomorphous and probably isostructural with dichloro-2,2',2"terpyridinezinc(II). Corbridge and Cox,¹ in their single-crystal structure determination, reported that the zinc atom in the complex is linked in a distorted trigonal bipyramid to five atoms, three nitrogens of one terpyridine ligand (2·19, 2·11, 2·34 Å) and two chlorines (2·28, 2·30 Å).

hkl -	Dichloro-2,2',2"-terpyridinezinc(11) ¹			Dichloro-2,2',2"-terpyridineiron(11)		
	2 heta	d (Å)	$F_{ m obs}*$	$2\theta^{\dagger}$	d (Å)	I‡
001	8.074°	10.965	8	8 · 16°	10.83	w
200	10.936	8.090	22	$10 \cdot 89$	$8 \cdot 115$	m
$\bar{2}01$	$12 \cdot 070$	$7 \cdot 330$	37	$12 \cdot 05$	$7 \cdot 345$	s
011	$13 \cdot 438$	$6 \cdot 590$	19	$13 \cdot 28$	6.665	m
201	14.002	6.325	27	$14 \cdot 11$	$6 \cdot 273$	w
ī 11	$14 \cdot 327$	$6 \cdot 180$	15			.
111	14.701	$6 \cdot 025$	14	$14 \cdot 83$	$5 \cdot 972$	w
210	$15 \cdot 339$	5.774	13			
002	$16 \cdot 189$	$5 \cdot 474$	24	$16 \cdot 42$	$5 \cdot 398$	w
$\bar{2}11$	17.040	$5 \cdot 201$	16	17.17	$5 \cdot 164$	w
012	19.458	$4 \cdot 561$	15			
310	$19 \cdot 665$	$4 \cdot 514$	18			
Ī 12	$19 \cdot 951$	$4 \cdot 450$	14			
202	$20 \cdot 131$	$4 \cdot 411$	17			
112	$20 \cdot 495$	$4 \cdot 333$	35	20.66	$4 \cdot 300$	s
311	$20 \cdot 897$	$4 \cdot 251$	12			<u> </u>
$\overline{2}12$	$21 \cdot 875$	4.062	30	$21 \cdot 91$	4.056	s
212	$22 \cdot 861$	3.890	23	$23 \cdot 05$	$3 \cdot 858$	m
121	$23 \cdot 812$	3.730	20			
220	$24 \cdot 218$	$3 \cdot 675$	24	$24 \cdot 12$	$3 \cdot 671$	w

TABLE 1 X-RAY DIFFRACTION DATA

* Structure amplitude. $\dagger 2\theta_{obs}$ measured to an accuracy of 0.03° . ‡ Estimated intensity.

This new evidence supports the claim that the iron(II) atom in dichloro-2,2',2''-terpyridineiron(II) is five-covalent and coordinated in a distorted trigonal bipyramid.

* Manuscript received December 10, 1965.

† Department of Chemistry, University of Queensland, Brisbane.

¹ Corbridge, D. E. C., and Cox, E. G., J. Chem. Soc., 1956, 594.

Aust. J. Chem., 1966, 19, 1285-6

This suggestion was first made by Broomhead and Dwyer² in their investigation of the magnetic moments of some metal halide complexes. They found that the purple-red complex had a magnetic moment of 4.60 B.M., which corresponded to the high-spin type.

X-Ray Diffraction Results

Powdered, chemically pure dichloro-2,2',2"-terpyridineiron(Π) was packed tightly into a 0.3-mm Lindemann glass capillary, and mounted in a standard Philips powder camera. One and ten hour exposures were taken, using nickel-filtered Cu Ka radiation ($\lambda = 1.54178$ Å), from a Philips PW1010 generator. The camera was calibrated with a 30-min exposure of a standard (sodium chloride, a = 5.63874 Å), and had an effective radius of 57.067 ± 0.001 mm. The lines were indexed in terms of dichloro-2,2',2"-terpyridinezinc(Π) (a = 16.21, b = 8.25, c = 10.97 Å, $\beta = 93.5^{\circ}$) and are listed in Table 1.

Acknowledgment

The authors wish to thank Dr J. A. Broomhead for suggesting the problem and supplying a sample of the metal complex.