## SOLVENT EXCHANGE RATES IN COBALT(III) COMPLEXES MEASURED BY N.M.R. SPECTROSCOPY\*

## By I. R. LANTZKE<sup>†</sup> and D. W. WATTS<sup>†</sup>

The mechanism of substitution reactions in octahedral cobalt(III) complexes of the type  $[CoXY en_2]^{n+}$ , where en represents 1,2-diaminoethane, and X and Y monodentate ligands, has been extensively reviewed.<sup>1-4</sup> In aquation studies, where studies of oxygen exchange in aquo complexes would have been useful in the interpretation of mechanism, the techniques are difficult, and not a great amount of work has been attempted.<sup>5,6</sup> In most of the non-aqueous solvent studies<sup>7-10</sup> the differentiation between unimolecular  $(S_N 1)$  and bimolecular solvolytic  $(S_N 2SOL)$ mechanisms of substitution has proved difficult because intermediates containing the coordinated solvent have not been isolated.

Recent work in dipolar aprotic solvents,<sup>11–14</sup> where stable complexes containing the coordinated solvent have been prepared, has emphasized the need for solvent exchange results, and in these systems n.m.r. spectroscopy will prove a useful technique in that proton resonances in such ligands as dimethyl sulphoxide (DMSO) and NN-dimethylformamide (DMF) are shifted significantly by coordination.<sup>15</sup>

We have studied exchange of the solvent DMSO- $d_6$  for DMSO in complex ions of the type cis-[CoX(DMSO) en<sub>2</sub>]<sup>2+</sup> where X = Cl<sup>-</sup>, Br<sup>-</sup>, and NO<sub>2</sub><sup>-</sup>, and in the complex ion cis-[Co(DMSO)<sub>2</sub> en<sub>2</sub>]<sup>3+</sup> at the probe temperature (35°) in a Varian A60 analytical n.m.r. spectrometer. (DMSO- $d_6$  was used as supplied by Merck, Sharpe & Dohme at 99.9% purity.) Rate constants were calculated from the areas of the methyl proton resonances of the coordinated and free dimethyl sulphoxide molecules.

\* Manuscript received August 25, 1966.

- † School of Chemistry, University of Western Australia, Nedlands, W.A.
- <sup>1</sup> Basolo, F., and Pearson, R. G., "Mechanisms of Inorganic Reactions." (John Wiley: New York 1958.)
- <sup>2</sup> Stranks, D. R., "Modern Coordination Chemistry." (Interscience: New York 1960.)
- <sup>3</sup> Basolo, F., and Pearson, R. G., Adv. inorg. Chem. Radiochem., 1961, 3, 1.
- <sup>4</sup> Chan, S. C., and Miller, J., Rev. pure appl. Chem., 1965, 15, 11.
- <sup>5</sup> Kruse, W., and Taube, H., J. Am. chem. Soc., 1961, 83, 1280.
- <sup>6</sup> Martin, D. F., and Tobe, M. L., J. chem. Soc., 1962, 1388.
- <sup>7</sup> Brown, D. D., Ingold, C. K., and Nyholm, R. S., J. chem. Soc., 1953, 2674.
- <sup>8</sup> Pearson, R. G., Henry, P. M., and Basolo, F., J. Am. chem. Soc., 1957. 79, 5379, 5382.
- <sup>9</sup> Hughes, M. N., and Tobe, M. L., J. chem. Soc., 1965, 1204.
- <sup>10</sup> Bosnich, B., Ingold, Sir Christopher, and Tobe, M. L., J. chem. Soc., 1965, 4074.
- <sup>11</sup> Tobe, M. L., and Watts, D. W., J. chem. Soc., 1964, 2991.
- <sup>12</sup> Chin, L. F., Millen, W. A., and Watts, D. W., Aust. J. Chem., 1965, 18, 453.
- <sup>13</sup> Fitzgerald, W., and Watts, D. W., Aust. J. Chem., 1966, 19, 935.
- <sup>14</sup> Lantzke, I. R., and Watts, D. W., Aust. J. Chem., 1966, 19, 949.
- <sup>15</sup> Lantzke, I. R., and Watts, D. W., Aust. J. Chem., 1967, 20, 35.

Aust. J. Chem., 1967, 20, 173-5

The results are presented in Table 1. The solvolysis reaction

cis-[CoX(DMSO) en<sub>2</sub>]<sup>2+</sup>+DMSO  $\rightarrow cis$ -[Co(DMSO)<sub>2</sub> en<sub>2</sub>]<sup>3+</sup>+X<sup>-</sup>

is negligible under these conditions.<sup>15</sup>

These rates parallel the results on aquation of complexes of the type [CoClX en<sub>2</sub>]<sup>+</sup>, where X = Br<sup>-</sup>, Cl<sup>-</sup>, and NO<sub>2</sub><sup>-</sup>, and support the duality of mechanism proposed by Asperger and Ingold<sup>16</sup> in that although Br<sup>-</sup> is expected to promote ionization more than Cl<sup>-</sup>, NO<sub>2</sub><sup>-</sup> by electron withdrawal must inhibit ionization and thus the formation of an  $S_{\rm N}$ 1 transition state. The greater rate for NO<sub>2</sub><sup>-</sup>, however, correlates with the stabilization of an  $S_{\rm N}$ 2 transition state by the NO<sub>2</sub><sup>-</sup> ligand.

The results also suggest that Adamson<sup>17</sup> in suggesting a hydrogen bonded intermediate in aquation is in error, in that in the present system no comparable

TABLE 1

| RATE CONSTANTS $(k_{ex})$ FOR SOLVENT EXCHANGE IN DMSO- $d_6$ AT $35^\circ$<br>$k_{ex}$ calculated from d(DMSO)/dt                                                                                                                                                                                                                 |                                                                         |                                          |                                                        |                                                                                                                     |                                                       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Complexes<br>(all <i>cis</i> )                                                                                                                                                                                                                                                                                                     | Concn.<br>(M)                                                           | δ (p.p.m.)                               |                                                        | $k_{\mathrm{ex}} \ (\mathrm{min}^{-1})$                                                                             |                                                       |  |
|                                                                                                                                                                                                                                                                                                                                    |                                                                         | Coord.*<br>DMSO                          | Free<br>DMSO                                           | From<br>Coord.                                                                                                      | From<br>Free                                          |  |
| $\begin{array}{l} [\operatorname{CoCl}(\operatorname{DMSO}) \ \operatorname{en}_2](\operatorname{ClO}_4)_2 \\ [\operatorname{CoBr}(\operatorname{DMSO}) \ \operatorname{en}_2](\operatorname{ClO}_4)_2 \\ [\operatorname{Co}(\operatorname{NO}_2)(\operatorname{DMSO}) \ \operatorname{en}_2](\operatorname{ClO}_4)_2 \end{array}$ | $ \begin{array}{c} 0 \cdot 41 \\ 0 \cdot 39 \\ 0 \cdot 50 \end{array} $ | $2 \cdot 77 \\ 2 \cdot 75 \\ 2 \cdot 74$ | $2 \cdot 57 \\ 2 \cdot 57 \\ 2 \cdot 57 \\ 2 \cdot 57$ | $\begin{array}{ccc} 4\cdot 1 & \times 10^{-3} \\ 4\cdot 6 & \times 10^{-3} \\ 1\cdot 80 \times 10^{-2} \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |
| $[Co(DMSO)_2 en_2](ClO_4)_3$                                                                                                                                                                                                                                                                                                       | 0.34                                                                    | $2 \cdot 94$                             | $2 \cdot 57$                                           | $2\cdot 65	imes 10^{-3}$ †                                                                                          | $2\cdot 65	imes 10^{-3}$ †                            |  |

\* Centre of doublet.

<sup>†</sup> Half the measured rate of removal and release of DMSO to allow for the two identical ligands.

intermediate could exist involving the DMSO molecule. However, like Stranks (ref.<sup>2</sup>, p. 123) we find it difficult to understand a duality of mechanism and feel that this present work must be extended to a greater variety of ligands X and to the measurement of activation parameters.

The slower exchange with the trivalent complex cis-[Co(DMSO)<sub>2</sub> en<sub>2</sub>]<sup>3+</sup> is consistent with the requirement of greater energy to achieve charge separation for a dissociative reaction of an ion of greater charge.

It is also possible to follow comparable displacement reactions of the type

$$cis$$
-[CoCl(DMF) en<sub>2</sub>]<sup>2+</sup>+DMSO  $\rightarrow cis$ -[CoCl(DMSO) en<sub>2</sub>]<sup>2+</sup>+DMF

by following the aldehyde proton resonance of DMF which occurs in this system at 7.77 p.p.m. when coordinated, and 8.00 p.p.m. when free. This reaction was conveniently studied at higher temperatures than that of the probe and thus the

<sup>16</sup> Asperger, S., and Ingold, C. K., J. chem. Soc., 1956, 2862.

<sup>17</sup> Adamson, A. W., J. Am. chem. Soc., 1958, 80, 3183.

activation energy was easily determined. The results presented below give an activation energy of  $24 \cdot 6 \pm 0.5$  kcal mole<sup>-1</sup> and an entropy of activation of  $0.6 \pm 1.6$  cal deg<sup>-1</sup> mole<sup>-1</sup>:

| Complex concn. (M)      | 0.200                | 0.271                | 0.204       |
|-------------------------|----------------------|----------------------|-------------|
| $10^{2}k \ (\min^{-1})$ | 0.94                 | $2 \cdot 76$         | $9 \cdot 0$ |
| Temperature             | $44 \cdot 8^{\circ}$ | $54 \cdot 0^{\circ}$ | 64 · 4°     |

These activation parameters are consistent with those measured previously for  $S_{\rm N}$ 1 reactions of *cis*-[CoCl(DMF) en<sub>2</sub>]<sup>2+</sup> involving a trigonal bipyramidal transition state (e.g. aquation,<sup>18</sup> 25·2 kcal mole<sup>-1</sup> and 0·5 cal deg<sup>-1</sup> mole<sup>-1</sup>; anation<sup>14</sup> by Cl<sup>-</sup> to give *trans*-product, 25·4 kcal mole<sup>-1</sup> and 0·7 cal deg<sup>-1</sup> mole<sup>-1</sup>; anation<sup>14</sup> by SCN<sup>-</sup> to give *trans*-product, 25 kcal mole<sup>-1</sup> and 3 cal deg<sup>-1</sup> mole<sup>-1</sup>; and are similar to the parameters for the aquation<sup>18</sup> of *cis*-[CoCl(DMA) en<sub>2</sub>]<sup>2+</sup> (DMA = NNdimethylacetamide) and *cis*-[CoCl(DMSO) en<sub>2</sub>]<sup>2+</sup> which are 23·5 kcal mole<sup>-1</sup> and 4·7 cal deg<sup>-1</sup> mole<sup>-1</sup> and 25·2 kcal mole<sup>-1</sup> and 1·5 cal deg<sup>-1</sup> mole<sup>-1</sup>, respectively. These aquation reactions have been shown to involve an  $S_{\rm N}$ 1 rate determining step.<sup>18</sup>

<sup>18</sup> Lantzke, I. R., and Watts, D. W., Aust. J. Chem., 1966, 19, 1821.