THE STRUCTURE OF THE "ENDOTHIOTRIAZOLINES" AND "ENDOXYTRIAZOLINES"

By G. W. Evans† and B. Milligan†

In 1903 Busch and Schneider¹ prepared a compound A, of empirical formula $C_{14}H_{11}N_3S$, by heating 1,4-diphenylthiosemicarbazide with formic acid. They named it an "endothiotriazoline" and proposed the structure (I; R = H). Subsequently Baker and Ollis² proposed that this was a meso-ionic compound, for which they suggested two alternative structures (II; R = H) and (III; R = H).

The related "endothiodihydrothiodiazoles" and "endoiminotriazolines", 4 also prepared by Busch *et al.*, were formulated as (IV) and (V) by Baker and Ollis.² Since the relative positions of the ring atoms in (IV) and (V) are unambiguous, comparison of the proton magnetic resonance spectra of these compounds (IV, V; R = H) with Busch's "endothiotriazoline" (A) should establish which of the two

structures, (II) and (III), is the more probable. The p.m.r. data, given in Table 1, indicate that the non-benzenoid proton of A has a similar environment to that of (V). Thus we favour the skeletal structure (II) for the "endothiotriazolines". Treatment of the methiodide of A with hot aqueous alkali gives 1,4-diphenylsemicarbazide and methanethiol (identified by gas chromatography), providing chemical evidence for the presence of an exocyclic sulphur atom, as in structure (II). Potts et al.,⁵ in a preliminary report, also claim that some of Busch's bridged-ring compounds have meso-ionic structures belonging to the 1,2,4-triazole series.

- * Manuscript received February 23, 1967.
- † Division of Protein Chemistry, CSIRO Wool Research Laboratories, Parkville, Vic.
- ¹ Busch, M., and Schneider, S., J. prakt. Chem., 1903, 67, 246.
- ² Baker, W., and Ollis, W. D., Q. Rev. chem. Soc., 1957, 11, 15.
- ³ Busch, M. et al., Ber. dt. chem. Ges., 1895, 28, 2635; J. prakt. Chem., 1899, 60, 225; 1903, 67, 201, 216, 246, 257.
- ⁴ Busch, M., et al., Ber. dt. chem. Ges., 1905, 38, 856, 4049; J. prakt. Chem., 1906, 74, 533.
- ⁵ Potts, K. T., Roy, S. K., and Jones, D. P., Am. chem. Soc. Abstr., 152nd Meeting, 1966, S-15.

The p.m.r. data for the methyl derivatives of A, (IV; R = Me), and (V; R = Me) also favour the skeletal structure (II; R = Me) for the substituted "endothiotriazolines" (see Table 1). However, Potts et al.⁵ claim that the product

Table 1

PROTON MAGNETIC RESONANCE ABSORPTIONS
(In trifluoroacetic acid)

Compound .	M.P.		δ (p.p.m.)		
	Obs.	Lit.	Н	CH3	Ph
A	216-217°a	214-215° °	9.90		7 · 5 – 8 · 0
(IV; R = H)	194-195	190 f	10.45		7 · 5 – 8 · 0
(V; R = H)	187-188	189 g	$9 \cdot 53$	_	$7 \cdot 3 - 8 \cdot 0$
В	263-265 b	256 h	9 · 53		7 · 6 – 7 · 7
A (Me deriv.)	260-263	253 °		$2 \cdot 67$	$7 \cdot 4 - 7 \cdot 9$
$(IV; R = CH_3)$	221–222°	216 f	<u> </u>	$2 \cdot 97$	7 · 4 – 7 · 8
$(V; R = CH_3)$	251-252 d	245 - 246 ¹		$2 \cdot 58$	$7 \cdot 2 - 7 \cdot 9$

- ^a Prisms from ethanol (Found: C, $66 \cdot 2$; H, $4 \cdot 5$; N, $16 \cdot 5$; S, $12 \cdot 7$. Calc. for $C_{14}H_{11}N_3S$: C, $66 \cdot 4$; H, $4 \cdot 4$; N, $16 \cdot 6$; S, $12 \cdot 7\%$).
- ^b Needles from dimethylformamide (Found: C, 70.8; H, 4.9; N, 17.7. Calc. for $C_{14}H_{11}N_3O$: C, 70.9; H, 4.6; N, 17.7%).
- ° Yellow plates from acetonitrile (Found: C, $51\cdot3$; H, $4\cdot2$; N, $13\cdot7$. Calc. for $C_9H_8N_2S_2$: C, $51\cdot9$; H, $3\cdot9$; N, $13\cdot5\%$).
- d Pale yellow prisms from acetonitrile (Found: C, $76\cdot 6;~H,~5\cdot 7;~N,~17\cdot 2.$ Calc. for $C_{21}H_{18}N_4\colon$ C, $77\cdot 3;~H,~5\cdot 6;~N,~17\cdot 2\%).$
 - ^e Busch, M., and Schneider, S., J. prakt. Chem., 1903, 67, 246.
 - f Busch, M., Ber. dt. chem. Ges., 1895, 28, 2635.
 - ⁸ Busch, M., Ber. dt. chem. Ges., 1905, 38, 856.
 - h Busch, M., and Schneider, S., J. prakt. Chem., 1903, 67, 263.
 - ¹ Busch, M., and Mehrtens, G., Ber. dt. chem. Ges., 1905, 38, 4049.

of reaction of acetic anhydride and 1,4-diphenylthiosemicarbazide is 3-methyl-1,4-diphenyl-1,2,4-triazoline-5-thione (in which a phenyl group has migrated), rather than (II; R=Me). Certainly, the ultraviolet spectra of A and the corresponding methyl derivative differ appreciably, suggestive of a rearrangement of phenyl substituents.

Busch and Schneider⁶ also prepared a compound B, of empirical formula $C_{14}H_{11}N_3O$, by heating the 1-formyl derivative of 1,4-diphenylsemicarbazide. Their formula (VIII) was discounted by Baker and Ollis² who proposed two alternative

⁶ Busch, M., et al., J. prakt. Chem., 1903, 67, 263; Ber. dt. chem. Ges., 1910, 43, 3001.

structures, (VI) and (VII). The similarity of the p.m.r. spectra of B and (V; R = H) suggests that the skeletal structure (VI) is more likely than (VII), and this is substantiated by the presence of a strong absorption at 1665 cm⁻¹, attributable to the carbonyl stretching vibrations of an amide, in the infrared spectrum of B.

Experimental

Proton magnetic resonance spectra were determined on a Varian A60 spectrometer operating at 60 Me/s (tetramethylsilane as internal standard) using 10% solutions.

With the exception of the two compounds described below, all others were prepared according to the original literature.

The "Endothiotriazoline" A (Methyl Derivative)

A mixture of 1,4-diphenylthiosemicarbazide (1·0 g) and acetic anhydride (2·5 ml) was heated on a steam-bath for 4 hr, cooled, and diluted with water. Trituration of the resulting oil with ether gave the product (0·22 g), m.p. 260–263° (lit.¹ 253°), after recrystallization from ethanol (Found: C, 67·6; H, 5·0; N, 15·6; S, 12·3. Calc. for $C_{15}H_{13}N_3S$: C, 67·4; H, 4·9; N, 15·7; S, 12·0%).

The "Endothiodihydrothiodiazole" (IV; R = H)

An excess of peracetic acid (20% solution in acetic acid) was added dropwise to a solution of 4-phenyl-1,3,4-thiadiazolidine-2-thione⁷ (1·8 g) in acetic acid (25 ml) at room temperature. The corresponding disulphide⁷ (1·6 g) soon began to separate as orange crystals. These were washed with a little ethanol and then heated in chloroform at 50° for 2 hr. The product (0·7 g) separated on cooling, and gave yellow needles, m.p. 194–195° (lit. 190°), after crystallization from chloroform/ethanol (Found: C, 49·4; H, 3·3; N, 14·5; S, 33·2. Calc. for $C_8H_6N_2S_2$: C, 49·5; H, 3·1; N, 14·4; S, 33·0%).

Ultraviolet Spectra

The "endothiotriazoline", A, in methanol has absorption maxima at λ 244 m μ (ϵ 20800) and 324 m μ (ϵ 3200). The corresponding methyl derivative shows only one peak at 220 m μ (ϵ 23700) with shoulders at c. 248 and 294 m μ .

Acknowledgments

We thank Mr J. L. Little, Division of Applied Chemistry, CSIRO Chemical Research Laboratories, for recording the p.m.r. spectra, and Professor J. M. Swan for valuable advice.

⁷ Busch, M., Ber. dt. chem. Ges., 1895, 28, 2635.