SHORT COMMUNICATIONS

MOLECULAR POLARIZABILITY. THE ANISOTROPY OF THE 0-0 BOND*

By M. J. ARONEY, † R. J. W. LE FÈVRE, † and R. K. PIERENS†

Hydrogen peroxide, irrespective of state, is known to exist as the fixed skew structure¹⁻⁵ originally proposed by Penney and Sutherland⁶ (see Fig. 1). An electron diffraction study by Shand⁷ in 1946 indicated a similar type of configuration for dimethyl peroxide. Rogers and Campbell⁸ in 1952 reported the dipole moments of t-butyl hydroperoxide and di-t-butyl peroxide (in benzene at 25°) as 1.87 D and 0.92 D respectively. These were shown to be in accord with hydrogen peroxide-like structures having dihedral angles ϕ of $c. 100^{\circ}$ (for t-butyl hydroperoxide) and $c. 125^{\circ}$ (for di-t-butyl peroxide); the larger ϕ can reasonably be attributed to the mutual repulsions of the bulky t-butyl groups.

The present work is concerned with experimental

determinations of the dipole moment and molar Kerr constant of di-t-butyl peroxide in benzene solution and with the interpretation of these data to provide (a) information on the solute configuration, and (b) the anisotropic electron polarizabilities of the O-O group in peroxides.

- * Manuscript received April 28, 1967.
- † School of Chemistry, University of Sydney.
- ¹ Abrahams, S. C., Collin, R. L., and Lipscomb, W. N., Acta crystallogr., 1951, 4, 15.
- ² Randall, J. T., Proc. R. Soc., 1937, 159, 82.
- ³ Sutton, L. E., et al., Spec. Publ. chem. Soc., No. 11, M 69 (1958); No. 18, M 38s (1965).
- ⁴ Bain, O., and Giguere, P. A., Can. J. Chem., 1955, 33, 527.
- ⁵ Linton, E. P., and Maass, O., Can. J. Res., 1932, 7, 81.
- ⁶ Penney, W. G., and Sutherland, G. B. M., Trans. Faraday Soc., 1934, **30**, 898; J. chem. Phys., 1934, **2**, 492.
- ⁷ Shand, W., Ph.D. Thesis, California Institute of Technology, 1946.
- ⁸ Rogers, M. T., and Campbell, T. W., J. Am. chem. Soc., 1952, 74, 4742.

Aust. J. Chem., 1967, 20, 2251-3

Experimental

Di-t-butyl peroxide, a commercial sample, was distilled shortly before use (b.p. c. $50^{\circ}/90$ mm). Benzene (thiophen-free) was dried with sodium wire. The following solvent constants apply at 25° : $\epsilon_1 = 2 \cdot 2725$; $d_1 = 0 \cdot 87378$; $(n_1)_D = 1 \cdot 4973$; $10^7B_1 = 0 \cdot 410$; $10^{12}{}_{s}K_1 = 0 \cdot 0756$.

The apparatus, techniques, methods of calculation, and symbols have previously been described. $^{9-11}$ The experimental results are shown in Table 1.

TABLE 1

$10^{5}w_{2}$	1972	5304	7994	9227		
$10^{4}\Delta\epsilon$	40	106	151	177		
$-10^{5}\Delta d$	177	419	677	795		
$-10^{4}\Delta n$	24	64	97	112		
	a = a \	A al Name - (1102 NAd/	$\Sigma w_0 = -0$	0844.	
	$\Sigma \Delta n/\Sigma$	$w_2 = -0.1$	135, $\Delta\Delta u_i^2$	$w_2 = -0.3$	862	
$10^5 w_2$	$\Sigma \Delta n/\Sigma$ 1459	$\frac{\Delta e_1 \Delta w_2}{2w_2} = 0.1$ $\frac{2665}{2}$	$121, \Sigma \Delta n^2 / \Sigma$ 4061	$w_2 = -0.3$ 6592	362 7994	8612

Discussion

Our measurements lead to a total polarization of $60 \cdot 0$ c.c., a molar refraction $[R]_{\rm D}$ of $43 \cdot 6$ c.c., and a dipole moment μ of $0 \cdot 89 \pm 0 \cdot 06$ D, which is in good agreement with the two previous estimates $0 \cdot 92 \pm 0 \cdot 05$ D⁸ and $0 \cdot 94$ D.¹² In each case μ was calculated assuming the distortion polarization to equal $[R]_{\rm D}$; an uncertainty in $_{\rm A}P$ (the atomic polarization) of $\pm 0 \cdot 05$ $R_{\rm D}$ results in a possible error in μ of $\pm 0 \cdot 06$ D. The molar Kerr constant at infinite dilution is $+2 \cdot 9_6 \times 10^{-12}$.

Rogers and Campbell⁸ analysed their observed moment (on the basis that $\mu(C-H) = 0.40 \text{ D}$, $\mu(C-O) = 0.62 \text{ D}$, and $\angle C-O-O = 105^{\circ}$) to indicate that the dihedral angle ϕ in di-t-butyl peroxide is c. 125°. Six years later a similar conclusion (c. 123°) was drawn by Lobunez, Rittenhouse, and Miller¹² who showed that the measured μ was not compatible with a freely rotating model or with one in which there is "free oscillation outside the region excluded by the barrier to *cis* configuration", i.e. that both the *cis* and *trans* forms are energetically unfavoured. Further evidence for the "rigidity" of the skew structure came from the constancy of the experimental dipole moments $(0.94-0.95 \text{ D})^{12}$ over the temperature range 30–50°.

⁹ Le Fèvre, C. G., and Le Fèvre, R. J. W., Ch. XXXVI in "Physical Methods of Organic

- ¹⁰ Le Fèvre, R. J. W., and Sundaram, K. M. S., *J. chem. Soc.*, 1962, 1494.
- ¹¹ Le Fèvre, R. J. W., "Dipole Moments." 3rd Edn. (Methuen: London 1953.)

¹² Lobunez, W., Rittenhouse, J. R., and Miller, J. G., J. Am. chem. Soc., 1958, 80, 3505.

Chemistry." (Ed. A. Weissberger.) 3rd Edn. (Interscience: New York 1960.)

SHORT COMMUNICATIONS

The proton magnetic resonance spectrum of di-t-butyl peroxide in deuterochloroform consists of a single, sharp absorption 73 c/s downfield from tetramethylsilane (as internal reference) and this changes only to a sharp peak 79 c/s downfield from TMS at the lower limit (-60°) of our spectrometer. The dielectric relaxation time (τ) of $4 \cdot 1 \times 10^{-12}$ sec recently found¹³ for the peroxide in benzene solution (by a single frequency measurement at 3100 Mc/s) would most likely relate to the overall molecular rotation rather than to an intramolecular motion (cf. $\tau = 1 \cdot 2 \times 10^{-12}$ sec for dimethyl ether in benzene; $\tau = 2 \cdot 0 \times 10^{-12}$ sec for ethylene oxide in benzene).¹³

The dipole moment of di-t-butyl ether has not yet been recorded. McClellan¹⁴ lists four estimates of μ (di-n-butyl ether) measured in benzene at 25°; all are within the range $1 \cdot 18 \pm 0.09$ D and from these the n-butyl-oxygen group moment is calculable (with $\angle C$ -O-C = 110°) as $1 \cdot 03 \pm 0.08$ D. If then μ (di-t-butyl peroxide) = $0 \cdot 89 \pm 0.06$ D and $\angle C$ -O-C = 105°, it follows that the dihedral angle ϕ would be $126^{\circ} \pm 8^{\circ}$. The bond moments of Rogers and Campbell,⁸ if used in the present calculations, result in $\phi = 126^{\circ}$.

The anisotropic electron polarizabilities of the O-O bond can now be derived from the experimental molar Kerr constant of di-t-butyl peroxide and the electron polarization of the O-O link using equations 22, 30, 35, and 36 of Le Fèvre's review.¹⁵ Gillis¹⁶ lists $[R]_D$ for the O–O group as 2.27 c.c. so that $_{\rm E}P$ equals 2.16 c.c. (assuming $_{\rm E}P = 0.95R_{\rm D}$). The following data are necessary for the calculations: $b_{\rm L}(\rm C-C) = 0.97, \ b_{\rm T}(\rm C-C) = b_{\rm V}(\rm C-C) = 0.26, ^{17} \ b_{\rm L}(\rm C-H) = b_{\rm T}(\rm C-H) = b_{\rm V}(\rm C-H) = 0.26, ^{17} \ b_{\rm L}(\rm C-H)$ $0.65,^{17}$ $b_{\rm L}({\rm C-O}) = 0.89$, $b_{\rm T}({\rm C-O}) = b_{\rm V}({\rm C-O}) = 0.46,^{18}$ μ (di-t-butyl peroxide) = 0.89 D, $_{\rm D}P/_{\rm E}P = 1.05$ (assumed), $\angle {\rm C-O-O} = 105^{\circ}$, $\angle {\rm C-C-C} = 109.5^{\circ}$, and $\phi = 126^{\circ}$. The longitudinal, transverse, and vertical polarizabilities of bonds ($b_{\rm L}$, $b_{\rm T}$, $b_{\rm V}$, respectively) are expressed in 10^{-24} c.c., i.e. Å³ units. Solution of the equations leads to $b_{\rm L}(\rm O-O) = 0.62$, $b_{\rm T}(\rm O-O) = b_{\rm V}(\rm O-O) = 1.04$, and a ratio $b_{\rm L}(\rm O-O)/b_{\rm T}(\rm O-O)$ of 0.60. Other bonds for which the mean transverse polarizability is known to exceed the longitudinal polarizability are N-H (in ammonia) and N-C (in trimethylamine). Such relationships are understandable if unshared electrons are more polarizable along than across their orbital axes; then, by the method of calculation adopted,¹⁵ the polarizability components for these duplets become incorporated into those of the bond, thus leading to a value of $(b_{\rm T}+b_{\rm V})/2$ which may be greater than that of $b_{\rm L}$.

Acknowledgment

We wish to thank Mr D. V. Radford for informing us of his experimental results¹³ prior to publication.

- ¹³ Le Fèvre, R. J. W., and Radford, D. V., unpublished data.
- ¹⁴ McClellan, A. L., "Tables of Experimental Dipole Moments." (Freeman: San Francisco 1963.)
- ¹⁵ Le Fèvre, R. J. W., Adv. phys. org. Chem., 1965, 3, 1.
- ¹⁶ Gillis, R. G., Rev. pure appl. Chem., 1960, 10, 21.
- ¹⁷ Le Fèvre, R. J. W., Orr, B. J., and Ritchie, G. L. D., J. chem. Soc. B, 1966, 273.
- ¹⁸ Le Fèvre, R. J. W., Sundaram, A., and Pierens, R. K., J. chem. Soc., 1963, 479.