SYNTHESIS OF $\alpha, 2^{\prime}$-DIACETOXY-3,4, $4^{\prime}, 6^{\prime}$-TETRAMETHOXYCHALCONE AND $4,6,3^{\prime}, 4^{\prime}$-TETRAMETHOXYISOAURONE*

By J. W. Clark-Lewis \dagger and R. W. Jemison \dagger

Acetylation of dihydroquercetin $5,7,3^{\prime}, 4^{\prime}$ 'tetramethyl ether with acetic anhydride and sodium or potassium acetate was recently shown ${ }^{1}$ to yield $\alpha, 2^{\prime}$-diaceetoxy$3,4,4^{\prime}, 6^{\prime}$-tetramethoxychalcone (I) in the first recorded analogy in the dihydroflavonol series to the well-known flavanone- 2^{\prime}-hydroxychalcone equilibrium. The fact of the existence of the corresponding chalcone anions (II) ${ }^{2}$ in alkaline solutions of 2 -benzyl2 -hydroxycoumaran-3-ones (e.g. III) has now been applied to the synthesis of the diacetoxychalcone (I). The ultraviolet-light absorption of the anion (II) resembled

(III)

that of the diacetoxychalcone (I), and for preparation of the latter compound the sodium salt of the anion (II) was acetylated with acetic anhydride and sodium acetate, which gave the diacetoxychalcone (I) in 35% yield. Formation of the anion (II) was accompanied by benzylic acid rearrangement to the corresponding carboxylate anion, which led to isolation of $4,6,3^{\prime}, 4^{\prime}$-tetramethoxyisoaurone (IV). The diacetoxychalcone (I) and isoaurone (IV) were separated by fractional crystallization, and the structure of the isoaurone was inferred from infrared, nuclear magnetic resonance, and mass spectrometric data. Variation in the proportion of sodium hydroxide used in preparation of the anion (II) did not appear to affect the extent of the benzilic rearrangement, although the best yield of the diacetoxychalcone was obtained when 2 equiv. of sodium hydroxide were used in preparing the anion (II) from the hydroxybenzylcoumaranone (III). Attempts to prepare the diacetoxychalcone by direct

[^0]Aust. J. Chem., 1968, 21, 815-6
acetylation of this hemiketal (III) with acetic anhydride and pyridine or sodium acetate were unsuccessful even under the conditions which convert dihydroquercetin tetramethyl ether into the diacetoxychalcone (I), so that the latter transformation appears not to proceed by intermediate formation of the coumaran-3-one (III).

The isoaurone (IV) belongs to the more stable series of geometrical isomers described as trans-isoaurones by Marathe, Byrne, and Vidwans. ${ }^{3}$ The vinylic proton is strongly deshielded by the aromatic rings and its nuclear magnetic resonance signal occurred as a singlet at lower field ($2 \cdot 08 \tau$) than recorded by the Indian authors for the trans-4'-methoxy-5-methyl analogue ($2 \cdot 65 \tau$), and considerably lower than the value $3 \cdot 1 \tau$ reported for cis-4'-methoxy-5-methyl-isoaurone. ${ }^{3}$ The assignment of configuration to the isoaurone (IV) is supported by the occurrence of the 2^{\prime}-proton doublet at very low field ($1 \cdot 76 \tau$), indicating deshielding by the carbonyl group and the double bond.

Experimental

N.m.r. spectra were recorded with a Varian A60A spectrometer and tetramethylsilane as internal standard. Ultraviolet and infrared spectra were recorded with Perkin-Elmer 137UV and 237 spectrometers, and the mass spectrum with a Perkin-Elmer-Hitachi RMU6D instrument. Thin-layer silica-gel plates were developed with ether and sprayed with 5% vanillin in sulphuric acid.

2-Hydroxy-4,6-dimethoxy-2-(3,4-dimethoxybenzyl)coumaran-3-one (III)
Cyclization ${ }^{1}$ of 2^{\prime}-hydroxy- $\alpha, 3,4,4^{\prime}, 6^{\prime}$ pentamethoxychalcone gave the coumaran-3-one with broad hydroxyl absorption at 3520 and carbonyl absorption at $1705 \mathrm{~cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$; light absorption in 95% ethanol: $\lambda_{\max } 224(\log \epsilon 4 \cdot 64)$ and $291 \mathrm{~m} \mu(\log \epsilon 4 \cdot 53)$; $\lambda_{\max } 382 \mathrm{~m} \mu(\log \epsilon$ $3 \cdot 32$) in a $9: 1$ mixture of 95% ethanol and 10% aqueous sodium hydroxide. Its n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed a two-proton peak at $6 \cdot 8$ (methylene group), twelve-proton methoxyl absorptions at 6.2, a two-proton phloroglucinol quartet ($J_{\mathrm{AB}} 1 \cdot 8 \mathrm{c} / \mathrm{s}, \nu_{\mathrm{A}} 4 \cdot 0 \nu_{\mathrm{B}} 4 \cdot 2$), and a three-proton multiplet at $c .3 \cdot 1 \tau$ (veratryl ring protons); the hydroxyl signal (removed by $\mathrm{D}_{2} \mathrm{O}$ exchange) occurred at $5 \cdot 7 \tau$.

$\alpha, 2^{\prime}$-Diacetoxy-3, $4,4^{\prime}, 6^{\prime}$-tetramethoxychalcone (I) and 4,6,3', 4^{\prime}-Tetramethoxyisoaurone (IV)

The coumaran-3-one ($0.69 \mathrm{~g}, 1.92 \mathrm{mmole}$) in methanol (5 ml) was added to sodium hydroxide $(0.154 \mathrm{~g}, 3.8 \mathrm{mmole})$ in methanol (5 ml). Evaporation under reduced pressure left an orange solid which was heated with fused sodium acetate (1 g) and acetic anhydride (10 ml) under reflux for 12 hr before dilution with water. Crystallization of the precipitated solid from ethanol gave a mixture of yellow prisms and needles which was separated by repeated crystallization into the diacetoxychalcone, yellow prisms ($0.3 \mathrm{~g}, 35 \%$), m.p. $135-136^{\circ}$ not depressed by an authentic sample ${ }^{1}$ of m.p. $139 \cdot 5^{\circ}$ (Found: $\mathrm{C}, 62 \cdot 5 ; \mathrm{H}, 5 \cdot 5$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{9}: \mathrm{C}, 62 \cdot 2 ; \mathrm{H}$, $5 \cdot 4 \%$), and bright yellow needles of $4,6,3^{\prime}, 4^{\prime}$-tetramethoxyisoaurone ($0 \cdot 15 \mathrm{~g}, 23 \%$), m.p. $165-167^{\circ}$ (lit. ${ }^{4} 173 \cdot 5-174^{\circ}$) (Found: C, $66 \cdot 9 ; \mathrm{H}, 5 \cdot 8$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$: C, $66 \cdot 7 ; \mathrm{H}, 5 \cdot 3 \%$). The infrared and n.m.r. spectra of the diacetoxychalcone were indistinguishable from those previously recorded. ${ }^{1}$ The isoaurone showed absorption maxima at 1775,1755 , and $1630 \mathrm{~cm}^{-1}$ (CHCl_{3}) and at $261(\log \epsilon 3 \cdot 16)$ and $403 \mathrm{~m} \mu(\log \epsilon 4 \cdot 35)$ in 95% ethanol; its n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed four three-proton peaks at $6 \cdot 20,6 \cdot 08,6 \cdot 07$, and $6 \cdot 03$ (methoxyls), the phloroglucinol quartet ($J_{\mathrm{AB}} 2 \cdot 0 \mathrm{c} / \mathrm{s}, \tau_{\mathrm{A}} 3 \cdot 71 \tau_{\mathrm{B}} 3 \cdot 76$), three one-proton multiplets (two doublets and a quartet) due to the veratryl ring protons ($\tau ; 2^{\prime} \mathrm{H}$, c. $1 \cdot 76 ; 5^{\prime} \mathrm{H}, ~ c .3 \cdot 13 ; 6^{\prime} \mathrm{H}$, c. $\left.2 \cdot 56 \tau ; J_{2^{\prime}, 6^{\prime}} 2 \cdot 0, J_{5^{\prime}, 6^{\prime}} 8 \cdot 5 \mathrm{c} / \mathrm{s}\right)$, and a sharp one-proton singlet at $2 \cdot 08 \tau$ (vinylic proton). Its mass spectrum showed a strong peak due to the parent ion at $m / e 342$. The diacetoxychalcone ($R_{F} 0.31$) and isoaurone ($R_{F} 0 \cdot 62$) were well separated on t.l.c. plates.
${ }^{3}$ Marathe, K. G., Byrne, M. J., and Vidwans, R. N., Tetrahedron, 1966, 22, 1789.
${ }^{4}$ Enebäck, C., and Gripenberg, J., J. org. Chem., 1957, 22, 220.

[^0]: * Manuscript received September 7, 1967.
 \dagger The Flinders University of South Australia, Bedford Park, S.A. 5042.
 ${ }^{1}$ Clark-Lewis, J. W., and Jemison, R. W., Aust. J. Chem., 1967, $20,149$.
 ${ }^{2}$ Dean, F. M., "Naturally Occurring Oxygen Ring Compounds." p. 342. (Butterworths: London 1963.)

