
DITERPENOIDS*

XV.† TRANS-ABIENOL

By R. M. CARMAN[‡] and N. DENNIS[‡]

cis-Abienol (Ia)¹ occurs widely in Abies oleoresins² and in particular in the oleoresin of A. balsamea (L.) Mill. (Canada balsam),³ but the isomeric trans-abienol (Ib) has not been reported. In view of the known co-occurrence of cis- and transcommunic acid in Agathis australis⁴ (Lamb. ex D. Don) Stend., and cis- and transbiformene in Dacrydium biforme,⁵ it seemed biogenetically reasonable to expect trans-abienol to co-occur with cis-abienol. A preliminary investigation of Canada balsam did not afford a compound corresponding to trans-abienol, and so we synthesized an authentic sample.

The cis,trans-isomerization of non-conjugated olefins by irradiation in the presence of a photosensitizer is well documented.⁶ cis-Abienol hydrate in acetone as solvent and photosensitizer was irradiated with a naked Hanovia ultraviolet lamp to give a mixture of double-bond isomers. Gas chromatography showed two components in equal amounts. The first had a retention time identical with that of authentic cis-abienol. Chromatography over alumina impregnated with silver nitrate gave unchanged crystalline cis-abienol together with the second component, trans-labda-12,15-dien-8R-ol (Ib; trans-abienol).

The use of spectral evidence in the determination of cis/trans isomerism in conjugated dienes has previously been reported.³ The proton magnetic resonance spectrum of *trans*-abienol confirms the gross structure (Ib) and provides evidence concerning the *trans* nature of the Δ^{12} double bond. The C12 proton occurs as a broad triplet at 4.57τ ($J \simeq 6.5 \text{ c/s}$) and the C15 and C16 protons occur as a seven-line ABX system (four X lines, three broad AB lines). The *trans* assignment (Ib) is also

* Manuscript received September 4, 1967.

- † Part XIV, Aust. J. Chem., 1967, 20, 2789.
- ‡ Chemistry Department, University of Queensland, St. Lucia, Qld. 4067.
- ¹ Carman, R. M., Aust. J. Chem., 1966, 19, 629.
- ² Gray, P. S., and Mills, J. S., J. chem. Soc., 1964, 5822.
- ³ Carman, R. M., Aust. J. Chem., 1966, 19, 1535.
- ⁴ Thomas, B. R., Acta chem. scand., 1966, 20, 1074.
- ⁵ Carman, R. M., and Dennis, N., Aust. J. Chem., 1967, 20, 157.
- ⁶ Moussebois, C., and Dale, J., J. chem. Soc. (C), 1966, 260.

Aust. J. Chem., 1968, 21, 823-5

SHORT COMMUNICATIONS

supported by the peak position and intensity of the ultraviolet absorption of transabienol. These results are in agreement with those obtained $previously^{5,7}$ for transdienes.

With authentic *trans*-abienol in hand, Canada balsam was reinvestigated for the presence of this isomer. Gas chromatographic analysis of the neutral components of the balsam showed *trans*-abienol to be present to an extent of about 0.25% of the total balsam. Chromatography of the neutral fraction over alumina impregnated with silver nitrate gave *trans*-abienol.

Experimental

Melting points were uncorrected. Ultraviolet spectra were recorded with a Cary 14 spectrophotometer. Infrared spectra were measured on a Perkin-Elmer 237 spectrophotometer. Optical rotations were recorded in chloroform solutions on a Perkin-Elmer 141 polarimeter. P.m.r. spectra were recorded at 60 Mc/s on a Varian A60 spectrometer in carbon tetrachloride solutions with tetramethylsilane as internal reference. All gas chromatograms were obtained on an Aerograph Hi-Fi 600-B with flame-ionization detector using stainless-steel columns, 5 ft long and $\frac{1}{8}$ in . o.d. The solid support was acid-washed Chrom. W 60/80 (5% SF 96) and 80/100 (5% E.G.S. and 5% SE 30) mesh. Retention times for the diterpenoids are listed in Table 1.

·			
Alcohols	5% Ethylene Glycol Succinate	5% SF96 at 165°	5% SE30 at 185°
cis-Abienol (Ia)	1.75 at 140°	1.41	$1 \cdot 21$
	$1.58 ext{ at } 165^{\circ}$		
	$1.06 \text{ at } 204^{\circ}$		
trans-Abienol (Ib)	$2 \cdot 13$ at 140°	1.57	$1 \cdot 41$
	$1.89 \text{ at } 165^{\circ}$		
	$1.58 \text{ at } 170^{\circ}$		

Table 1 retention times of cis- and trans-abienols relative to manool (\equiv 1)

cis-Abienol (Ia)

cis-Abienol was isolated from Commercial Canada balsam (F. W. Berk, London) essentially as described by Gray and Mills,² m.p. 40–41°, $[a]_D + 22°$ (c, 1.05). Crystallization from aqueous acetone gave long needles of abienol hydrate, m.p. 65°, $[a]_D + 23°$ (c, 1.2). $\lambda_{max} 238 \text{ m}\mu$ (ϵ 19800 in absolute ethanol).

trans-Abienol (Ib)

cis-Abienol hydrate (5 g) in acetone (200 ml) was irradiated in a silica flask with a naked Hanovia ultraviolet lamp for 20 hr. The neutral product was isolated with ether, chromatographed on neutral alumina (100 g), and eluted with ether-hexane (1 : 1) to give a colourless viscous oil (4.8 g) (gas chromatography showed two components in ratio 1 : 1). Further chromatography on silver nitrate-alumina (5%; 200 g) and elution with ether-hexane (1 : 9) gave cis-labda-12, 15-dien-8*R*-ol (0.12 g) as a colourless viscous oil which crystallized from aqueous acetone as colourless needles of the hydrate, m.p. 65-66°, $[a]_{\rm D} + 23^{\circ}$ (c, 0.83). Further elution with ether-hexane (2 : 3) gave, as a colourless viscous oil, trans-labda-12,15-dien-8*R*-ol (0.3 g), $[a]_{\rm D} + 20^{\circ}$ (c, 0.085) (gas chromatography showed only one peak; see Table 1) (Found: C, 82.7; H, 11.9. C₂₀H₃₄O requires C, 82.7; H, 11.8%). $\lambda_{\rm max} 232 \, \mu\mu$ (c 27100 in absolute ethanol). $\nu_{\rm max}$ (film): 3425s,

⁷ Norin, T., Acta chem. scand., 1965, 19, 1020.

3090w, 2940vs, 2870vs, 1720w, 1660w, 1640m, 1607m, 1461vs, 1350vs, 1367s, 1155s, 1120s, 1081s, 1067s, 906-883s, 831w cm⁻¹. P.m.r. spectrum: $3 \cdot 74$ (C15; quartet), $4 \cdot 57$ (C12; broadened triplet, $J_{11,12}$ 6 $\cdot 5$ c/s), $5 \cdot 06$, $5 \cdot 18$ (C16, C16'; eight lines; $J_{15,16}$ 10 $\cdot 15$, $J_{15,16'}$ 17 $\cdot 25$, $J_{16,16'}$ 1 $\cdot 2$ c/s), $7 \cdot 85$ (C11; complex), $8 \cdot 30$ (C17 methyl; fine doublet; J 1 c/s), $8 \cdot 94$ (C14 methyl), $9 \cdot 18$, $9 \cdot 24$, $9 \cdot 27$ (C18, C19, C20 methyls) τ .

trans-Abienol from Canada Balsam

The neutrals from commercial balsam were chromatographed in the vapour phase. Besides peaks for *cis*-biformene (0.3%), manool (0.4%), and *cis*-abienol (98.7%), a peak (0.5%) with retention time identical to authentic *trans*-abienol was observed on all columns used. Canada balsam (300 g) in ether was extracted with aqueous sodium hydroxide solution (2%). The neutral fraction (80 g) was dissolved in hexane and chromatographed on neutral alumina. Elution with hexane-ether (1:1) gave an alcohol fraction from which *cis*-abienol crystallized, m.p. 65° . The mother liquors were chromatographed on silver nitrate-alumina (5%; 10 g) and elution with hexane-ether (3:2) gave *trans*-labda-12,15-dien-8*R*-ol as a colourless viscous oil (0.19 g) with physical properties identical with those recorded above.