SHORT COMMUNICATIONS

THE PRINCIPAL MOLECULAR POLARIZABILITIES OF DIPHENYL*

By R. J. W. LE FÈVRE[†] and D. S. N. MURTHY[†]

For the evaluation of the principal polarizabilities, b_1 , b_2 , and b_3 , of a non-polar molecule, three independent observational equations are needed in the general case when $b_1 \neq b_2 \neq b_3$. Usually only two are available, namely (1) and (2), which expand respectively the electronic polarization and the molar Kerr constant of the species under investigation:

$${}_{\rm E}P = 4\pi {\rm N}(b_1 + b_2 + b_3)/9 \tag{1}$$

$${}_{\rm m}K = 2\pi {\rm N} ({}_{\rm D}P/{}_{\rm E}P) [(b_1 - b_2)^2 + (b_2 - b_3)^2 + (b_3 - b_1)^2]/405 {\rm k}T$$
(2)

(Here, N is Avogadro's number, $_{\rm D}P$ and $_{\rm E}P$ the distortion and electronic polarizations, **k** is Boltzmann's constant, and T the absolute temperature.) A number of such situations have been noted before,¹⁻⁴ and possible sources of a third relationship examined.

The present communication concerns diphenyl, and illustrates the usefulness of measurements of diamagnetic anisotropies in problems of the above type.

For this hydrocarbon a molar Kerr constant of 40.5×10^{-12} at infinite dilution in carbon tetrachloride at 25° has been recorded;⁵ the electronic polarization is 49.5 c.c.⁶ and the distortion polarization is 52.0_6 c.c.⁵ From (1) and (2) we obtain:

$$b_1 + b_2 + b_3 = 58 \cdot 86 \times 10^{-24} \tag{3}$$

$$b_1^2 + b_2^2 + b_3^2 - b_1 b_2 - b_2 b_3 - b_3 b_1 = 84 \cdot 76 \times 10^{-48} \tag{4}$$

Five solutions of diphenyl in carbon tetrachloride at 20° have now been found to exhibit magnetic birefringence as follows (w_2 , weight fraction of solute; C_{12} , Cotton-Mouton constant of solution):

$10^{5}w_{2}$	3296	3977	4472	4873	6426
$10^{15}C_{12}$	$79 \cdot 1$	$96 \cdot 3$	$110 \cdot 0$	109 · 6	$155 \cdot 5$
whence $\Sigma C_{12} / \Sigma w_2 = 2 \cdot 39 \times 10^{-12}$					

* Manuscript received January 30, 1968.

† School of Chemistry, University of Sydney, N.S.W. 2006.

¹ Le Fèvre, C. G., and Le Fèvre, R. J. W., *Rev. pure appl. Chem.*, 1955, 5, 261; *J. chem. Soc.*, 1955, 1641.

² Le Fèvre, R. J. W., and Sundaram, K. M. S., J. chem. Soc., 1963, 4442.

⁸ Le Fèvre, R. J. W., Radom, L., and Ritchie, G. L. D., J. chem. Soc. (B), 1967, 595.

⁴ Le Fèvre, R. J. W., and Radom, L., J. chem. Soc. (B), in press.

⁵ Chau, J. Y. A., Le Fèvre, C. G., and Le Fèvre, R. J. W., J. chem. Soc., 1959, 2666.

⁶ Le Fèvre, R. J. W., and Narayana Rao, D. A. A. S., Aust. J. Chem., 1955, 8, 39.

Aust. J. Chem., 1968, 21, 1903-4

(For explanations of techniques used, see Le Fèvre, Williams, and Eckert,⁷ and Le Fèvre and Murthy;⁸ the quoted observations were made photometrically as described in the last reference.⁸) Accordingly, since the magnetic birefringence of the solvent is beneath detectability, the molar Cotton-Mouton constant, $_{\infty}(_mC_2)$, of diphenyl at infinite dilution emerges⁷ as $6 \cdot 99 \times 10^{-15}C$. Therefore by equation (15) of Le Fèvre *et al.*⁷ we have:

$$(k_1 - k_2)(b_1 - b_2) + (k_2 - k_3)(b_2 - b_3) + (k_3 - k_1)(b_3 - b_1) = 336 \cdot 1 \times 10^{-53}$$
 (5)

(Here, k_1 , k_2 , and k_3 are the principal diamagnetic susceptibilities of the diphenyl molecule.)

Lasheen⁹ has recently published the *molar* anisotropies of this hydrocarbon as $-67 \cdot 7$, $-61 \cdot 7$, and $-183 \cdot 8$ (all times 10^{-6})—these being obtained by the Krishnan-Banerjee¹⁰ method together with a knowledge of the molecular orientations in the crystal.¹¹ In molecular units, $k_1 = -11 \cdot 24_0 \times 10^{-29}$, $k_2 = -10 \cdot 24_4 \times 10^{-29}$, and $k_3 = -30 \cdot 51_6 \times 10^{-29}$; by insertion into (5) they produce:

$$18 \cdot 280b_1 + 21 \cdot 268b_2 - 39 \cdot 548b_3 = 336 \cdot 1 \times 10^{-24} \tag{6}$$

Equations (3), (4), and (6), involving a quadratic during solution, yield alternative sets of values, A or B:

	\mathbf{A}	В
$10^{24}b_{1}$	$19 \cdot 6_5$	$24 \cdot 7_4$
$10^{24}b_2$	$25 \cdot 1_2$	$20 \cdot 2_{8}$
$10^{24}b_{8}$	$14 \cdot 0_{9}$	$13\cdot 8_4$

Set B is preferred since⁵ it is obvious that the molecule should be most polarizable in the direction parallel to the 1,1'-carbon-carbon bond.

The results under B are the first for diphenyl to be deduced from observable physical properties without any assumptions of an empirical kind. They are consistent with the suppositions made by Chau *et al.*⁵ concerning the inadequate estimate of b_1 then reached from bond and group polarizabilities without allowances for conjugative effects.¹² The conclusion⁵ that diphenyl as a solute adopts a near-flat conformation is also supported by the new values and the smallness of b_3 compared with b_2 (twisting the structure towards orthogonality would increase b_3 and diminish b_2). It is of interest that a relationship between the "vertical" polarizabilities b_V and the inter-centre distances r of $C \cdots C$ bonds, lately advanced by Le Fèvre and Radom,⁴ predicts b_3 for a fully coplanar form as $14 \cdot 2 \times 10^{-24}$ c.c. if the r values given by Hargreaves and Hasan Rizvi¹¹ are used, or as $13 \cdot 8$ and $14 \cdot 0 \times 10^{-24}$ c.c. if the alternative bond lengths given in Sutton's tables¹³ are taken.

⁷ Le Fèvre, R. J. W., Williams, P. H., and Eckert, J. M., Aust. J. Chem., 1965, 18, 1133.

⁸ Le Fèvre, R. J. W., and Murthy, D. S. N., Aust. J. Chem., 1966, 19, 179.

⁹ Lasheen, M. A., Phil. Trans. R. Soc. A, 1964, 256, 357.

¹⁰ Krishnan, K. S., and Banerjee, S., Phil. Trans. R. Soc. A, 1935, 234, 265.

- ¹¹ Trotter, J., Acta crystallogr., 1961, 14, 1135; Hargreaves, A., and Hasan Rizvi, S., Acta crystallogr., 1962, 15, 365.
- ¹² Le Fèvre, R. J. W., Adv. phys. org. Chem., 1965, 3, 1.
- ¹³ Sutton, L. E., "Tables of Interatomic Distances and Configuration in Molecules and Ions." Spec. Publ. Chem. Soc., No. 11, entry M 232, 1958.

1904