LONG-RANGE ³¹P-¹H SPIN-SPIN COUPLING IN ortho-STYRYLDIPHENYLPHOSPHINE*

By A. G. MORITZ,[†] J. D. SAXBY,[‡] and S. STERNHELL§

A detailed examination of the n.m.r. spectrum of the previously reported¹ ortho-styryldiphenylphosphine (I) reveals (Fig. 1) that the proton H_A , whose assignment¹ is based on the magnitude of the vicinal coupling constant, is subject to an interaction which causes splitting of the signal beyond the multiplicity due to spin-spin coupling within the vinyl group. We consider that this interaction is a long-range spin-spin coupling with ³¹P, as coupling of that magnitude $(1 \cdot 10 \pm$ $0 \cdot 05$ Hz) to one of the aryl protons would be entirely unprecedented.² ¹H-{³¹P} spin-decoupling confirmed unequivocally (Fig. 1(b)) that this coupling involves the ³¹P nucleus. A small but reproducible line-sharpening was also observed for lines

assigned to H_M with ${}^{1}H{-}{}^{\$1}P$ spin-decoupling, indicating a coupling between H_M and ${}^{\$1}P$ of c. 0.05–0.10 Hz. While long-range ${}^{\$1}P{-}^{1}H$ spin-spin coupling in aromatic and unsaturated systems has been investigated in detail,³ no analogy with the present case has been reported. The stereospecificity of the interaction between ${}^{\$1}P$ and H_M , combined with the fact that the coupling path would not normally be considered favourable^{3,4} for a relatively strong interaction, makes it possible that a "direct interaction" (i.e. one not involving all the intervening bonds) occurs. A somewhat sterically analogous situation occurs in *ortho*-fluoro-N,N'-dimethylbenzamide, where a ${}^{19}F{-}1H$ spin-spin coupling across six bonds is involved.⁵ It is,

* Manuscript received April 29, 1968.

[†]Australian Defence Scientific Service, Department of Supply, Defence Standards Laboratories, P.O. Box 50, Ascot Vale, Vic. 3052.

[‡]William Ramsay and Ralph Forster Laboratories, University College, Gower Street, London, W.C.1; present address: Coal Research Laboratories, Division of Mineral Chemistry, CSIRO, P.O. Box 175, Chatswood, N.S.W. 2067.

§ Department of Organic Chemistry, University of Sydney, N.S.W. 2006.

¹ Bennett, M. A., Nyholm, R. S., and Saxby, J. D., J. organomet. Chem., 1967, 10, 301.

² Newsoroff, G. P., and Sternhell, S., Aust. J. Chem., 1968, 21, 747.

⁸ Griffin, C. E., and Gordon, M., J. Am. chem. Soc., 1967, **89**, 4427; Martin, D. J., Gordon, M., and Griffin, C. E., *Tetrahedron*, 1967, **23**, 1831; Khaleeluddin, N., and Scott, J. M. W., *Chemy Ind.*, 1966, 1034; Kaplan, F., and Schultz, C. O., *Chem. Commun.*, 1967, 376.

⁴ Bothner-By, A. A., and Harris, R. K., J. Am. chem. Soc., 1965, 87, 3451.

⁵ Lewin, A. H., J. Am. chem. Soc., 1964, 86, 2303.

Aust. J. Chem., 1968, 21, 2565-7

SHORT COMMUNICATIONS

however, important to note that the analogous interproton coupling in 1,3-butadienes is highly dependent on substitution and stereochemistry⁴ and thus the interaction observed here may be analogous to that in *cis*-tagetone⁴ (II), where $J_{\rm AM} = 0.59$ Hz and $J_{\rm AX} = 1.59$ Hz.

Fig. 1.—Portion of the ¹H n.m.r. spectrum of o-styryldiphenylphosphine (I) at 60 MHz (5% in CDCl₃). (a) Normal spectrum; (b) with strong irradiation of the ³¹P nucleus.

In the methiodide (III) the signals assigned to the vinyl group give a straightforward AMX spectrum (δ_A 5.75, δ_M 5.40, δ_X 6.51 p.p.m., J_{AM} 0.9, J_{AX} 16.9, and J_{MX} 10.9 Hz). The widths of the components of signals due to H_A and H_M are equal and were estimated to be not more than 0.3 Hz larger than those of genuine singlets at the same resolution. Thus there is no evidence of significant long-range ³¹P-¹H coupling in (III) analogous to that postulated in (I). It is therefore attractive to consider that the origin of the long-range coupling in (I) is connected with direct overlap of the lone pair on the phosphorus with the σ -electrons of H_A, i.e. a type of hydrogen bonding. However, any significant intramolecular hydrogen bonding would be expected⁶ to be associated with a conspicuous downfield shift of the proton involved, while the chemical shift of H_A in (I) (5.60 p.p.m.) (Fig. 1) is unexceptional (the chemical shift of H_M in (I) is 5.18 p.p.m. as compared with 5.25 p.p.m.).⁷ The chemical shift of H_M in (I) is 5.18 p.p.m. as compared with 5.25 p.p.m. for the corresponding proton in *ortho*-methylstyrene.⁷

⁶ Jackman, L. M., and Sternhell, S., "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry." Ch. 2-2E. (Pergamon: London 1968.)

⁷ Gurudata, Stothers, J. B., and Talman, J. D., Can. J. Chem., 1967, 45, 731.

2566

Clearly, the n.m.r. spectra of 1,3-but adienes substituted at C1 (or C4) with the $-P(C_6H_5)_2$ group would throw light on the mechanism of this long-range interaction and on the possible analogy with long-range interproton coupling in 1,3-but adienes.⁴

Experimental

N.m.r. spectra were determined on a Varian HA100 spectrometer as 10% solutions in deuterochloroform, and on a Varian model HA60IL spectrometer as a 5% solution in deuterochloroform. The ¹H–{⁸¹P} spin-decoupled spectra were obtained with the HA60IL spectrometer operating in the frequency-sweep mode, using a variable crystal oscillator and amplifier⁸ at 24.29 MHz to supply the decoupling field.

o-Styryldiphenylmethylphosphonium Iodide (III)

o-Styryldiphenylphosphine (1.0 g) and methyl iodide (1.5 g) were allowed to stand in dry ether for c. 24 hr at room temperature.⁹ The white precipitate (c. 85% yield) which formed was collected and crystallized from a mixture of acetone and ethanol to give o-*styryldiphenylmethylphosphonium iodide*, m.p. 182° (Found: C, 59.0; H, 4.8; P, 6.8. Calc. for C₂₁H₂₀PI: C, 58.6; H, 4.7; P, 7.2%). N.m.r.: AMX system for the vinyl protons (3H, see text), doublet δ 3.14, J(H-C-P) 13 Hz (3H, methyl), and multiplet δ 7-8 (14H, aromatic protons).

Acknowledgment

One of us (J.D.S.) wishes to acknowledge the award of a CSIRO Postgraduate Studentship.

⁸ Long, G. L., and Moritz, A. G., unpublished data.

⁹ Morgan, P. W., and Herr, B. C., J. Am. chem. Soc., 1952, 74, 4526; Deacon, G. B., and Jones, R. A., Aust. J. Chem., 1963, 16, 499.