# MINOR ALKALOIDS OF *BOEHMERIA PLATYPHYLLA* DON. (FAMILY URTICACEAE)\*

## II.† ISOLATION OF CRYPTOPLEURINE AND A NEW SECO-PHENANTHRO-QUINOLIZIDINE ALKALOID

### By N. K. HART, \$ S. R. JOHNS, \$ and J. A. LAMBERTON \$

Although available in only very small quantities, two minor alkaloids from the shrub *Boehmeria platyphylla* Don. are of special interest because so little is known of alkaloids from the family Urticaceae, and because of their biosynthetic relationship to the phenanthroindolizidine alkaloids of *Tylophora* and *Ficus* species<sup>1</sup> and even closer relationship to the alkaloids of the botanically unrelated tree *Cryptocarya pleurosperma* White & Francis (family Lauraceae).<sup>2–4</sup> Consideration of the structures of the three *Boehmeria* alkaloids provides further evidence for the postulated biosynthetic scheme<sup>1,5</sup> whereby cryptopleurine and the *Tylophora* bases are derived from two equivalents of dihydroxyphenylalanine and one equivalent of lysine or ornithine respectively. Each of the three alkaloids corresponds to a different stage of the biosynthetic scheme.

It was shown in Part I<sup>6</sup> that the major *B. platyphylla* alkaloid is 3,4-dimethoxy- $\omega$ -(2'-piperidyl)acetophenone (Ia), and its structure was established from its preparation by *O*-methylation of pleurospermine (Ib), an alkaloid from the leaves of *Cryptocarya pleurosperma*.<sup>2</sup> One of the minor *B. platyphylla* alkaloids, C<sub>24</sub>H<sub>27</sub>NO<sub>3</sub>, m.p. 197–198°,  $[\alpha]_D - 64^{\circ}$  in chloroform, can also be directly related to a *C. pleurosperma* alkaloid, as, apart from a difference in the magnitude of  $[\alpha]_D$ , it is identical with cryptopleurine (II), the highly vesicant alkaloid from the bark of *C. pleurosperma*.<sup>3</sup> Purified (-)-cryptopleurine was found to have  $[\alpha]_D - 109^{\circ}$  in chloroform, in agreement with the previously reported value of  $[\alpha]_D - 106^{\circ}$ ,<sup>3</sup> so that it is evident that cryptopleurine is obtained from *B. platyphylla* as a partial racemate.

The second minor base,  $C_{24}H_{29}NO_3$ , m.p.  $134 \cdot 5-135 \cdot 5^\circ$ ,  $[\alpha]_D + 4 \cdot 6^\circ$  in chloroform, has a strong molecular ion peak at m/e 379 (89% of base peak), two mass units higher than that observed in the mass spectrum of cryptopleurine. As there was

\* Manuscript received June 19, 1968.

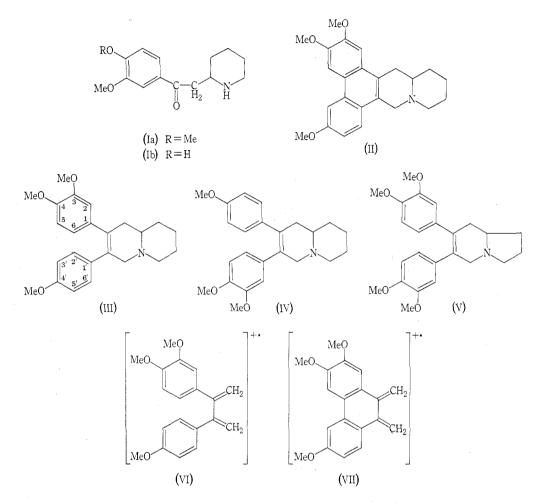
† Part I, Aust. J. Chem., 1968, 21, 1397.

<sup>‡</sup> Division of Applied Chemistry, CSIRO Chemical Research Laboratories, P.O. Box 4331, Melbourne, Vic. 3001.

<sup>1</sup> Govindachari, T. R., "The Alkaloids." (Ed. R. H. F. Manske.) Vol. IX, p. 517. (Academic Press: New York 1967.)

<sup>2</sup> Loder, J. W., Aust. J. Chem., 1962, 15, 296.

<sup>3</sup> Gellert, E., and Riggs, N. V., Aust. J. Chem., 1954, 7, 113.


<sup>4</sup> Fridrichsons, J., and Mathieson, A. McL., Nature, 1954, 173, 732.

<sup>5</sup> Wenkert, E., *Experientia*, 1959, **15**, 165.

<sup>6</sup> Hart, N. K., Johns, S. R., and Lamberton, J. A., Aust. J. Chem., 1968, 21, 1397.

Aust. J. Chem., 1968, 21, 2579-81

only a very limited amount of the purified alkaloid available, microanalyses were not obtained and the molecular formula was shown to be  $C_{24}H_{29}NO_3$  by a highresolution mass spectrum which indicated a molecular weight of 379 · 2141 (calc. mol. wt. 379 · 2147). This alkaloid, which is considered to be (III) or (IV), probably bears a



relationship to cryptopleurine like that of the alkaloid septicine (V) to tylocrebrine in *Ficus septica*,<sup>7</sup> and accordingly (III) is preferred, although chemical evidence does not enable a distinction to be drawn between (III) and (IV). The ultraviolet absorption spectrum of (III) in ethanol ( $\lambda_{max}$  230 m $\mu$  (log  $\epsilon$  4·34), 280 (log  $\epsilon$  4·07)) is different from that of cryptopleurine and resembles the spectra reported for *cis*-stilbenes.<sup>8</sup> The 100-Mc/s n.m.r. spectrum of the alkaloid in CDCl<sub>3</sub> solution (TMS  $\delta$  0·00) shows signals from three methoxyl groups at  $\delta$  3·47,  $\delta$  3·66, and  $\delta$  3·74, and signals from

<sup>7</sup> Russel, J. H., Naturwissenschaften, 1963, 50, 443.

<sup>8</sup> Scott, A. I., "Interpretation of the Ultraviolet Spectra of Natural Products." p. 99. (Pergamon Press: Oxford 1964.) seven aromatic protons. On the basis of structure (III), the aromatic proton signals can be interpreted as a one-proton signal at  $\delta 6.43$  showing only a small meta (2–3 c/s) coupling (H2), an A<sub>2</sub>B<sub>2</sub> system of four protons ( $\delta_A 6.64$ ,  $\delta_B 6.95$ ,  $J_{AB} 9.0$  c/s) assigned respectively to H3', H5' and H2', H6' on the methoxyphenyl substituent, and a two-proton signal at  $\delta 6.63$  assigned to H5 and H6, which coincide in chemical shift and show only a small meta-coupling.

The mass spectrum of (III) shows a base peak at m/e 265, and an intense peak at m/e 296 (58% of base peak) which can be explained by fragmentation to (VI), whereas cryptopleurine (II) shows a base peak at m/e 294 which can be attributed to (VII). This fragmentation for cryptopleurine is completely analogous to that suggested for the alkaloid tylophorine.<sup>1</sup>

### Experimental

The isolation of the major alkaloid from 17 kg of dried *B. platyphylla* has already been described in Part I. The major base (Ia) was eluted from a column of neutral alumina by a mixture of benzene and chloroform (10:1), and both minor bases were obtained from a small crystalline fraction (39 mg) eluted from the column by benzene in front of the fractions containing the major base (Ia). This small crystalline fraction was shown by thin-layer chromatography to be essentially a mixture of two components, and a separation was achieved by preparative thin-layer chromatography on plates of Kieselgel G developed in the solvent system acetone-chloroform (1:1). In this solvent system cryptopleurine had  $R_F \ 0.63$  and the minor seco-phenanthroquinolizidine base  $R_F \ 0.75$ . The alkaloids recovered from the thin-layer plates were each further purified by chromatography on a small column of alumina and eventually 15 mg of cryptopleurine and 10 mg of the seco-base were obtained.

Cryptopleurine, m.p. 197–198°,  $[\alpha]_D - 64^\circ$  (c, 0.5 in CHCl<sub>3</sub>), crystallized from acetone in colourless needles, and was identified by a mixed melting point determination and by comparison of the i.r. and mass spectra with those of authentic cryptopleurine.

The seco-phenanthroquinolizidine base (III) crystallized from acetone in colourless needles, m.p.  $134 \cdot 5-135 \cdot 5^{\circ}$ ,  $[\alpha]_{D} + 4 \cdot 6^{\circ}$  (c,  $0 \cdot 5$  in CHCl<sub>3</sub>). Spectroscopic data for this alkaloid has already been set out in the discussion, and the high-resolution mass spectrum was obtained on an MS9 instrument. The accurate molecular weight determination was made with perfluorotributylamine as a reference standard.

#### Acknowledgments

The authors are indebted to Dr Q. N. Porter (University of Melbourne) for an accurate molecular weight determination from a high-resolution mass spectrum, and to Mr W. T. Jones for the collection of B. platyphylla.