THE MAGNETIC ANISOTROPY OF CARBON DISULPHIDE*

By R. J. W. LE Fèvre, † D. S. N. Murthy, † and P. J. Stiles †

The anisotropies in the molar magnetic susceptibilities of OCS and CO₂ have recently been recorded as -8.4×10^{-6} e.m.u.¹ and -6×10^{-6} e.m.u.^{1,2} respectively. From these data Taft and Dailey¹ predicted that the magnetic anisotropy of CS₂ would be larger than that of OCS. In the present work we have used the Cotton–Mouton effect to obtain an experimental estimate of the magnetic anisotropy of CS₂.

Solutions of carbon disulphide (b.p. 46°) in carbon tetrachloride were prepared and were found to exhibit the following magnetic birefringences at 20° and with sodium light.

The weight fraction of the solute is here denoted by w_2 ; ΔC is the difference between the magnetic birefringences of the solution and the solvent.

The magnetic birefringence of carbon tetrachloride cannot be detected with the present apparatus. 3 Techniques used have been described previously. 4

The molar Cotton–Mouton constant of carbon disulphide as a solute in carbon tetrachloride emerges as -0.73×10^{-15} . Burge and Snellman⁵ have earlier reported a value of -0.8082×10^{-15} in the same solvent but at a wavelength of 5461 Å.

If the anisotropy* (b_1-b_3) in the electro-optical polarizability of CS₂ is known and the magnetic-field dependence of its polarizability⁶ is neglected, the magnetic anisotropy‡ (k_1-k_3) of CS₂ can be calculated using the relationship

$$_{\infty}(_{m}C_{2}) = (4\pi N/45kT)(b_{1}-b_{3})(k_{1}-k_{3})$$
(1)

where $_{\infty}(mC_2)$ is the molar Cotton–Mouton constant of CS₂ at infinite dilution in carbon tetrachloride.

- * Manuscript received August 12, 1968.
- † School of Chemistry, University of Sydney, N.S.W. 2006.
- \ddag The 1-direction is taken to be that of the molecular axis.
- ¹ Taft, H., and Dailey, B. P., J. chem. Phys., 1968, 48, 597.
- ² Buckingham, A. D., Prichard, W. H., and Whiffen, D. H., Trans. Faraday Soc., 1967, 63, 1057.
- ³ Le Fèvre, R. J. W., and Murthy, D. S. N., Aust. J. Chem., 1966, 19, 179.
- ⁴ Le Fèvre, R. J. W., Williams, P. H., and Eckert, J. M., Aust. J. Chem., 1965, 18, 1133.
- ⁵ Burge, E. J., and Snellman, O., Phil. Mag., 1949, 40, 1233.
- ⁶ Buckingham, A. D., and Pople, J. A., Proc. phys. Soc. B, 1956, 69, 1133.

The anisotropy in the optical polarizability of CS_2 as a solute in carbon tetrachloride has been deduced from Kerr effect measurements⁷ as $7.5 \, \text{Å}^3$. When our experimental Cotton–Mouton constant is considered in equation (1) together with this polarizability anisotropy, the molecular magnetic susceptibility anisotropy of CS_2 emerges as -2.3×10^{-29} e.m.u.

We conclude that the anisotropy, K_1-K_3 , in the molar magnetic susceptibility of CS₂ is -14×10^{-6} e.m.u. From this value of the magnetic anisotropy and a mean molar susceptibility⁸ of $-42\cdot2\times10^{-6}$, K_1 and K_3 appear as $-51\cdot_5\times10^{-6}$ and $-37\cdot_5\times10^{-6}$. As predicted,¹ the magnetic anisotropy of CS₂ exceeds those of CO₂ and OCS.

Acknowledgment

The award of a Commonwealth Research Studentship to P.J.S. is gratefully acknowledged.

⁷ Armstrong, R. S., Aroney, M. J., Le Fèvre, R. J. W., and Smith, M. R., *J. chem. Soc.*, 1958, 1474.

⁸ Foex, G., "Constantes selectionnées, diamagnétisme et paramagnétisme", in "Tables de Constantes et Données Numériques." (Masson: Paris 1957.)