
THE RELATIVE SIGN OF THE PROTON-PROTON COUPLINGS IN DIAZINE N-OXIDES

By A. G. MORITZ* and D. B. PAUL*

[Manuscript received February 26, 1969]

Although the n.m.r. spectrum of pyridine was originally analysed¹⁻³ on the basis of a positive value for the coupling across the nitrogen $(J_{2,6} + 0.40 \text{ Hz})$, a recent analysis⁴ of the spectrum obtained with simultaneous double-irradiation of the ¹⁴N nucleus has established that the coupling is negative $(J_{2,6} - 0.13 \text{ Hz})$. Negative values for $J_{2,6}$ have also been derived⁵ for 3-acetylpyridine (-0.21 Hz) and other β -monosubstituted pyridines.

During the course of examination of some pyridine N-oxides and diazine mono-N-oxides, we have observed that whereas the coupling across the nitrogen is negative $(J_{2,4} - 0.31 \text{ Hz})$ in pyrimidine N-oxide (I), the coupling is positive $(J_{3,5}+0.38 \text{ Hz})$ in pyrazine N-oxide (II). The common assumption that the magnitude and sign of the proton-proton couplings in aromatic compounds may be used in the analysis of related molecules therefore does not apply to the *meta* coupling across a nitrogen atom.

The diazine mono-oxides were prepared according to the literature methods^{6,7} and examined as degassed deuterochloroform solutions on a Varian HA60IL spectrometer modified for ¹H-{¹⁴N} spin-decoupling.⁸ The strength of the decoupling field was sufficiently high ($H_2 \simeq 2.5$ G, γ (¹⁴N) $H_2/2\pi \simeq 800$ Hz) that both ¹⁴N

* Australian Defence Scientific Service, Department of Supply, Defence Standards Laboratories, P.O. Box 50, Ascot Vale, Vic. 3032.

¹ Schneider, W. G., Bernstein, H. J., and Pople, J. A., Can. J. Chem., 1957, 35, 1487.

² Schneider, W. G., Bernstein, H. J., and Pople, J. A., Ann. N.Y. Acad. Sci., 1958, **70**, 806.
³ Pople, J. A., Schneider, W. G., and Bernstein, H. J., "High-resolution Nuclear Magnetic

Resonance." p. 266. (McGraw-Hill: New York 1959.)

- ⁴ Castellano, S., Sun, C., and Kostelnik, R., J. chem. Phys., 1967, 46, 327.
- ⁵ Kowalewski, V. J., Kowalewski, D. G. de, and Ferrá, E. C., J. molec. Spectrosc., 1966, 20, 203.
- ⁶ Koelsch, C. F., and Gumprecht, W. H., J. org. Chem., 1958, 23, 1603.
- ⁷ Itai, T., and Natsume, S., Chem. pharm. Bull., Tokyo, 1963, 11, 83.
- ⁸ Long, G. J., and Moritz, A. G., Molec. Phys., 1968, 15, 439.

Aust. J. Chem., 1969, 22, 1305-7

nuclei were simultaneously spin-decoupled from the protons despite the difference in the ¹⁴N chemical shifts. Spectra were analysed using modified LAOCOON2 binary computer programmes and the results are shown in Tables 1 and 2 (cf. 9,10).

CHEMICAL SHIFTS (Hz, internal TMS) IN DEUTEROCHLOROFORM The chemical shifts assigned to compounds (III) and (I) are consistent with those reported in refs. 9 and 10 respectively							
Compound	H2	H 3	H4	H5	H 6		
Pyridazine N-oxide (III)		509·3	$430 \cdot 1$	466.8	493·2		
Pyrimidine N-oxide (I)	538.5		$492 \cdot 2$	$437 \cdot 5$	503 · 0		

TABLE 1						
internal	TMS)	IN	DI			

TABLE	2
-------	----------

 $486 \cdot 6$

 $486 \cdot 6$

 $506 \cdot 4$

506.4

COUPLING CONSTANTS (Hz) IN DEUTEROCHLOROFORM

Compound	$J_{2,3}$	$J_{2,4}$	$J_{2,5}$	${J}_{2,6}$	${J}_{3,4}$	${J}_{3,5}$	${J}_{3,6}$	$J_{4,5}$	$J_{4,6}$	$J_{5,6}$
Pyridazine N-oxide					5 · 39	$2 \cdot 54$	0.99	7.67	0.92	6.49
Ref. 9					$5 \cdot 3$	$2 \cdot 5$	$1 \cdot 0$	$8 \cdot 0$	$1 \cdot 0$	$6 \cdot 5$
$\mathbf{Pyrimidine} \ N$ -oxide		0.31	$1 \cdot 06$	$2 \cdot 07$				$4 \cdot 71$	$1 \cdot 50$	$6 \cdot 63$
Ref. 10		c. 0	$1 \cdot 0$	$2 \cdot 0$				$4 \cdot 9$	$1 \cdot 6$	$6 \cdot 8$
Pyrazine N oxide	$4 \cdot 10$	<u> </u>	0.83	1.75		0.38	0.83		· —	4 · 1 0

For pyrimidine N-oxide, the relative signs were determined from simultaneous $^1H{-}\{^{14}N\}$ and selective $^1H{-}\{^1H\}$ spin-decoupling experiments:

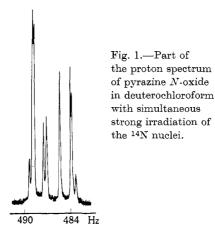
rel. signs detd. $\pm J_{2,5} \pm J_{4,5} \pm J_{2,6} \pm J_{4,6}$ Sel. decoupling of lines due to proton 4 $\pm J_{2,4} \pm J_{4,5} \pm J_{2,6} \pm J_{5,6}$ õ

In the case of a four-spin system, two relative signs are determined simultaneously by this method.¹¹ Similar experiments were carried out for pyridazine *N*-oxide (III) and the results are:

Sel. decoupling of lines due to proton 3 rel. signs detd. $\pm J_{3,4} \pm J_{4,6} \pm J_{3,5} \pm J_{5,6}$ $\pm J_{3,4} \pm J_{3,6} \pm J_{4,5} \pm J_{5,6}$ $\mathbf{5}$ $\pm J_{3,4} \pm J_{4,5} \pm J_{3,6} \pm J_{5,6}$

The lines due to the high-field protons of pyrazine N-oxide (II) are shown in Figure 1. Analysis of this spectrum according to the method of Gutowsky et al.¹² established that N = 4.93, L = 3.27, K = 2.13, and M = 1.37 Hz. As L < N, the coupling constants $J_{2,3}$ and $J_{2,5}$ are of the same sign. The K and M parameters are clearly identified, and as K > M, $J_{2,6}$ and $J_{3,5}$ are of the same sign. Iterative

⁹ Tori, K., Ogata, M., and Kano, H., Chem. pharm. Bull., Tokyo, 1963, 11, 235.


¹⁰ Ogata, M., Watanabe, H., Tori, K., and Kano, H., Tetrahedron Lett., 1964, 19.

¹¹ Freeman, R., Bhacca, N. S., and Reilly, C. A., J. chem. Phys., 1963, 38, 293.

¹² Grant, D. M., Hirst, R. C., and Gutowsky, H. S., J. chem. Phys., 1963, 38, 470.

Pyrazine N-oxide (II)

computer calculations gave values for the line positions which agreed with the observed values with a r.m.s. error of 0.02 Hz. Calculations established that the sign of K relative to N could not be determined unambiguously within the precision

of the measurements, so that the sign of $J_{2,6}$ or $J_{3,5}$ relative to $J_{2,3}$ or $J_{2,5}$ could not be determined. It is probable, however, that $J_{2,6}$ is positive. The magnitude of $J_{2,6}$ in pyrazine *N*-oxide (1.75 Hz) is similar to that observed¹³ for $J_{1,3}$ (1.73 Hz) in isoquinoline *N*-oxide, which is known to be of the same sign as $J_{3,4}$ from selective decoupling experiments.¹³ Furthermore, a complete analysis¹³ of the ¹⁴N spindecoupled spectrum of pyridine *N*-oxide has shown that $J_{2,6}$ (1.88 Hz) is of the same sign as $J_{2,3}$.

¹³ Moritz, A. G., and Paul, D. B., unpublished data.