
ACETYLACETONATOBIS(CYCLOPENTADIENYL)TITANIUM(III)

By R. S. P. COUTTS* and P. C. WAILES*

[Manuscript received March 21, 1969]

Previous work in these laboratories has shown that bis(cyclopentadienyl)titanium(III) complexes with bidentate chelate compounds can be formed readily with both four-¹ and five²-membered chelate rings. An obvious extension to this work is the synthesis of β -diketonate derivatives of titanium(III) in which the chelated rings will be six-membered.

When a fourfold excess of acetylacetone was added to a vigorously stirred solution of cp_2TiCl ($cp = \pi$ -cyclopentadienyl) in air-free water, a deep blue air-sensitive precipitate was obtained, identified from the data given below as (I), i.e. $cp_2Ti(acac)$, formed as in equation (1).

$$cp_2TiCl + acacH \rightarrow cp_2Ti(acac) + HCl$$
 (1)

Pentane-2,4-dionatobis(cyclopentadienyl)titanium(Π) (I) is monomeric and the magnetic moment is independent of temperature with one unpaired electron per titanium atom (Table 1).

Ligand correction 152×10^{-6} CGS units					
$T\left(^{\circ}{ extsf{K}} ight)$	$10^6 \chi'_{ m M}$	$\mu_{\rm eff}$ (B.M.)	<i>T</i> (°к)	$10^6 \chi'{ m M}$	$\mu_{\rm eff}$ (B.M.)
287	1316	1.74	196	1960	1.76
263	1415	1.73	166	2288	1.75
$234 \cdot 5$	1632	1.76	136	2671	$1 \cdot 71$
$202 \cdot 5$	1862	1.74			

TABLE 1 MAGNETIC PROPERTIES OF $cp_2Ti(acac)$ Ligand correction 152×10^{-6} CGS units

The yield of (I) is about 50%. The rest of the titanium is found in the red aqueous filtrate from which the titanium(IV) compounds $[cp_2Ti(acac)]ClO_4$ and $[cp_2Ti(acac)]BF_4$ can be precipitated by addition of ClO_4^- or BF_4^- under air-free conditions. These complexes are identical in every respect with those obtained from acetylacetone and $cp_2Ti(ClO_4)_2$ (or cp_2TiCl_2) in water, and which were recently characterized by Doyle and Tobias.³

* Division of Applied Chemistry, CSIRO Chemical Research Laboratories, P.O. Box 4331, Melbourne, Vic. 3001.

Coutts, R. S. P., and Wailes, P. C., Aust. J. Chem., 1967, 20, 1579; 1968, 21, 373; 1968, 21, 1181; Coutts, R. S. P., Wailes, P. C., and Kingston, J., Chem. Commun., 1968, 1170.

² Coutts, R. S. P., and Wailes, P. C., Aust. J. Chem., 1968, **21**, 2199.

³ Doyle, G., and Tobias, R. S., Inorg. Chem., 1967, 6, 1111.

Aust. J. Chem., 1969, 22, 1547-8

This oxidation to titanium(IV) could be brought about by protonation of titanium(III) species by the hydrochloric acid produced in the initial reaction. Alternatively, oxidation by an electron-transfer process involving chloride (similar to the oxidation of ferrocene to ferricenium ion; for a discussion see⁴) could occur.

Experimental

General

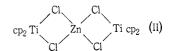
All manipulations were carried out in a nitrogen-filled glove-box or in a stream of purified argon.

Reaction of Acetylacetone with cp₂TiCl

The cp₂TiCl₂ (10 g) was stirred overnight in air-free water (150 ml) with excess granulated zinc (10 g). The solution was filtered in a stream of argon to remove unchanged zinc and a small amount of blue insoluble Ti(OH)₃ which is always formed. The deep blue filtrate* was vigorously stirred with acetylacetone (18 ml, added in small portions) for 2 hr, giving a deep blue precipitate (5.9 g) of cp₂Ti(acac) which was removed by filtration and washed several times with air-free water. The product had m.p. 71° (dec.) (evacuated capillary) and sublimed readily at 100°/10⁻³ mm (Found:† C, 64.5; H, 6.2; Ti (sulphate ash), 17.4; mol. wt. 278.‡ Calc. for C₁₅H₁₇O₂Ti: C, 65.0; H, 6.2; Ti, 17.3%; mol. wt. 277).

Spectral Data

The spectrum of $cp_2Ti(acac)$ was measured between 250 and 25000 cm⁻¹ in KBr disk (to 4000 cm⁻¹) and tetrahydrofuran solution.


Infrared.—The main bands due to the acetylacetonato ligand are at 1583 (C=C str§), 1512 (C=O str), and 1380 cm⁻¹ (C=O str), and clearly indicate that the ligand is bidentate. The cyclopentadienyl groups absorb at 3090 (C-H str), 1430 (C=C str), 1015 (C-H deform), and 785 cm⁻¹ (C-H deform).

Visible spectrum.—This was run on a Cary 14 spectrophotometer; bands due to d-d transitions were observed at 10260sh, 13040sh, 14560 (ϵ 61), and 17240 cm⁻¹ (ϵ 43). This is very similar to the spectra of other bis(cyclopentadienyl)titanium(III) compounds prepared and examined in these laboratories.^{1,2} The only effect of the acetylacetonato ligand is to raise the frequency of the highest-energy d-d transition from 13000–14000 to 14560 cm⁻¹.

Magnetic Susceptibility

Susceptibility was measured by the Gouy method in a sealed tube over the temperature range $136-287^{\circ}\kappa$. The moment is independent of temperature and close to the spin-only value for a d^{1} system.

* In organic solvents (tetrahydrofuran, methanol, etc.) cp_2TiCl_2 is reduced by zinc to (II),⁵ but in water the ion cp_2Ti^{III+} is present and can be precipitated by those anions which do not have insoluble zinc derivatives.

 \dagger Analyses for C and H were carried out by the Australian Microanalytical Service, Melbourne, on small pellets sealed in aluminium capsules of the type used in calorimetry.

‡ Ebulliometric in benzene.

Assignment by Nakamoto;⁵ others assign this band to C=O and the 1512 cm⁻¹ band to C=C. See ref.⁶ for a discussion of these bands.

- ⁴ Rosenblum, M., "Chemistry of the Iron Group Metallocenes." Part I. (Interscience: New York 1965.)
- ⁵ Vonk, C. G., personal communication to Martin, H. A., and Jellinek, F., in *J. organomet.* Chem., 1967, 8, 115; Salzmann, J. J., *Helv. chim. Acta*, 1968, 51(3), 526.
- ⁶ Nakamoto, K., "Infrared Spectra of Inorganic and Co-ordination Compounds." p. 216. (John Wiley: New York 1963.)