NORMAL COORDINATE ANALYSIS OF DICYANODIACETYLENE

By K. RAMASWAMY* and K. SRINIVASAN*

[Manuscript received July 14, 1969]

Introduction

In earlier papers¹⁻³ we determined the molecular constants of various conjugated linear systems using the "characteristic set of valence coordinates" introduced by Herranz and Castano.^{4,5} The present communication deals with the normal coordinate analysis of dicyanodiacetylene—the longest known linear molecule with four conjugated triple bonds.

Results and Discussion

The vibrational assignments given by Miller and Lemmon⁶ on the basis of $D_{\infty\hbar}$ symmetry were made use of in the present calculations. Since no microwave or electron diffraction data are available the structural parameters were transferred from dicyanoacetylene. These are given in Table 1.

Table 1 vibrational frequencies (cm^{-1}) and bond lengths $(Å)$											
										1	2235
2	2183		6	2097		9	455		12	276	$d = 1 \cdot 14$
-			7	501		10	156		13	$61 \cdot 5$	$r = 1 \cdot 37$
	3		$\begin{array}{cccccccc} 1 & 2235 & \sigma_u^+ \\ 2 & 2183 & \\ 3 & 1287 \cdot 5 & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VIBRATIONAL FREQUENCIES 1 2235 σ_u^+ 5 2266 π_g 2 2183 6 2097 3 1287.5 7 501	VIBRATIONAL FREQUENCIES (cm ⁻¹) 1 2235 σ_u^+ 5 2266 π_g 8 2 2183 6 2097 9 3 1287.5 7 501 10	VIBRATIONAL FREQUENCIES (cm ⁻¹) AND 1 2235 σ_u^+ 5 2266 π_g 8 501 2 2183 6 2097 9 455 3 1287.5 7 501 10 156	VIBRATIONAL FREQUENCIES (cm ⁻¹) AND BOND I 1 2235 σ_u^+ 5 2266 π_g 8 501 π_u 2 2183 6 2097 9 455 3 1287.5 7 501 10 156	vibrational frequencies (cm ⁻¹) and bond lenge 1 2235 σ_u^+ 5 2266 π_g 8 501 π_u 11 2 2183 6 2097 9 455 12 3 1287.5 7 501 10 156 13	vibrational frequencies (cm ⁻¹) AND BOND lengths (Å) 1 2235 σ_u^+ 5 2266 π_g 8 501 π_u 11 490.5 2 2183 6 2097 9 455 12 276 3 1287.5 7 501 10 156 13 61.5

The orthonormal set of symmetry coordinates,⁷ transforming according to the irreducible representations of $D_{\infty\hbar}$ point group, were constructed from the internal coordinates defined in Figure 1.

* Department of Physics, Annamalai University, Annamalainagar, South India.

¹ Ramaswamy, K., and Srinivasan, K., Aust. J. Chem., 1968, 21, 575.

² Ramaswamy, K., and Srinivasan, K., J. molec. Structure, 1969, 3, 473.

- ⁸ Ramaswamy, K., and Srinivasan, K., Aust. J. Chem., 1969, 22, 1123.
- ⁴ Herranz, J., and Castano, F., Spectrochim. Acta, 1966, 22, 1965.
- ⁵ Herranz, J., and Castano, F., An. R. Soc. esp. Fis. Quim. (A), 1966, 62, 199.
- ⁶ Miller, F. A., and Lemmon, D. H., Spectrochim. Acta (A), 1967, 23, 1415.

⁷ Wilson, E. B. Jr., Decius, J. C., and Cross, D. C., "Molecular Vibrations." (McGraw-Hill: New York 1955.)

Aust. J. Chem., 1970, 23, 825-7

The symmetry coordinates for the σ_{g^+} and σ_{u^+} species are given below:

$\sigma_g^+ { m sp}$	pecies	σ_u^+ species			
S_1	$2^{-1/2}(\Delta d_1 + d_2)$	S_5	$2^{-1/2}(\Delta d_1 - \Delta d_2)$		
S_2	$2^{-1/2}(\Delta D_1 + \Delta D_2)$	S_6	$2^{-1/2}(\Delta D_1 - \Delta D_2)$		
S_3	$6^{-1/2}(2\Delta r_2 - \Delta r_1 - \Delta r_3)$	S_7	$2^{-1/2}(\Delta r_1 - \Delta r_3)$		
S_4	$3^{-1/2}(\Delta r_1 + \Delta r_2 + \Delta r_3)$				

The F matrix elements were obtained in the usual way.¹⁻⁵ The computed valence constants are given in Table 2.

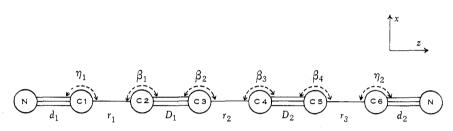


Fig. 1.—Inter-bond distances and inter-bond angles.

TABLE 2

valence force constants (mdyn/Å) for the two sets of chosen symmetry coordinates

f	Valence Force	Constants for	f	Valence Force	Constants for
Elements	Set I	Set II	Elements	Set I	Set II
f(d)	40.2984a	28.3509	$f(r_1D)$	21.0660	0.1195
$f(r_1)$ or $f(r_3)$	$28 \cdot 8024$	$12 \cdot 8664$	$f(r_2D)$	$25 \cdot 4226$	$4 \cdot 4231$
$f(r_2)$	$18 \cdot 4987$	$21 \cdot 6459$	$f(\beta)$	0.8324	0.8324
f(D)	$46 \cdot 2432$	$10 \cdot 4044$	$f(\eta)$	0.7005	0.7005
$f(dr_1)$	$26 \cdot 8087$	$6 \cdot 6492$			

^a This number of significant figures is retained to secure internal consistency in the calculations.

TABLE 3

		Set	I			Set II				
	1	2	3	4		1	2	3	4	
$\overline{S_1}$	1.2479	0.2170	0.1240	0.0235	S ₁	1.0246	0.0053	0.0200	0.0132	
S_2	0.0459	$1 \cdot 5627$	0.8642	0.4587	S_2	0.0256	$1 \cdot 1311$	0.2732	0.0067	
S_3	0.0243	0.5938	$1 \cdot 4532$	0.6039	S_3	0.0034	0.3279	$1 \cdot 1256$	0.0036	
S_4	0.0324	$0 \cdot 2127$	0.5108	$1 \cdot 3274$	S_4	0.0025	0.0082	0.3474	$1 \cdot 0032$	

POTENTIAL ENERGY DISTRIBUTION FOR THE VARIOUS NORMAL MODES OF σ_g^+

As seen from Table 2, abnormal values for the valence constants are obtained for this set. The potential energy distribution⁸ for this set, given in Table 3, also

⁸ Morino, Y., and Kuchitsu, K., J. chem. Phys., 1952, 20, 1809.

indicates very high mixing between the S_2 , S_3 , and S_4 coordinates of σ_g^+ species. Hence the following symmetry coordinates transforming according to the irreducible representation were constructed for the σ_g^+ and σ_u^+ species:

σ_g^+ species			σ_u^+ species			
S_1	$2^{-1/2}(\Delta d_1 + \Delta d_2)$	S_5	$2^{-1/2}(\Delta d_1 - \Delta d_2)$			
S_2	$20^{-1/2}(4\Delta r_2 - \Delta r_1 - \Delta r_3 - \Delta D_1 - \Delta D_2)$	S_6	$2^{-1}(\Delta r_1 - \Delta r_3 - \Delta D_1 + \Delta D_2)$			
S_3	$5^{-1/2}(\Delta r_1 + \Delta r_2 + \Delta r_3 + \Delta D_1 + \Delta D_2)$	S_7	$2^{-1}(\Delta r_1 - \Delta r_3 + \Delta D_1 - \Delta D_2)$			
S_4	$2^{-1}(\Delta r_1 + \Delta r_3 - \Delta D_1 - \Delta D_2)$					

The F matrix elements were computed and the valence force constants for this set are given in Table 2. As seen from Table 2 the potential energy distribution, computed for this set, justifies our choice of symmetry coordinates.

The f(d) value of $28 \cdot 35 \text{ mdyn/Å}$ of dicyanodiacetylene compares well with the value of $27 \cdot 62 \text{ mdyn/Å}$ and $26 \cdot 78 \text{ mdyn/Å}$ obtained in the case of dicyanoacetylene³ and cyanoacetylene¹ respectively. In the case of the three C–C bonds, r_1 , r_2 , and r_3 , the value obtained for the $f(r_1)$ and $f(r_3)$ is $12 \cdot 87 \text{ mdyn/Å}$ while the $f(r_2)$ value is $21 \cdot 65 \text{ mdyn/Å}$. The value obtained for f(D) is $10 \cdot 40 \text{ mdyn/Å}$. While the triple bonds on either side of the central single bond appear to have weakened out, the central single bond has strengthened to such a value as to be attributed a triple bond character.

Acknowledgment

One of the authors (K.S.) is thankful to the Ministry of Education, Government of India, New Delhi, for financial assistance through the award of a Senior Research Training Scholarship.