MASS SPECTRUM OF 4-OXOQUINOLIZIDINE

By M. HUSSAIN,* J. S. ROBERTSON,* and T. R. WATSON*

[Manuscript received January 5, 1970]

A mass spectral study of 4-oxoquinolizidine is discussed in this communication. The spectrum (Table 1) has features significantly dissimilar to the spectra of 1-, 2-, and 3-oxoquinolizidine¹ which indicates quite different fragmentation pathways. The major fragmentation patterns which the molecule undergoes upon electron impact are shown in Scheme 1; the presence of metastable peaks is depicted by an asterisk.

m/e	154	153	152	139	138	126	125
I(%)	11.37	$100 \cdot 0$	$53 \cdot 33$	$5 \cdot 68$	$62 \cdot 74$	$2 \cdot 35$	24 • 39a
m/e	124	112	111	110	99	98	97
I(%)	6.66	$9 \cdot 80$	$4 \cdot 11$	$3 \cdot 92$	$1 \cdot 96$	10.58	67.84^{b}
m/e	96	85	84	83	82	70	69
I(%)	$9 \cdot 01$	$2 \cdot 54$	$38 \cdot 43$	$47 \cdot 84$	$8 \cdot 62$	4.70	$23 \cdot 13$
m/e	68	67	57	56	55	54	53
I(%)	$6 \cdot 27$	$5 \cdot 09$	$4 \cdot 70$	$10 \cdot 98$	$27 \cdot 84$	$7 \cdot 45$	$3 \cdot 92$

	,	Гав	sle l
ASS	SPECTRUM	OF	4-0X00UIN0LIZIDINE

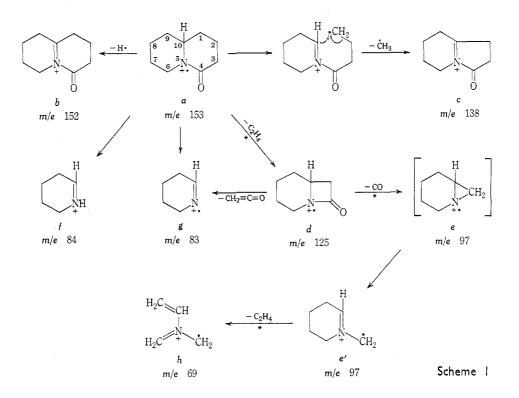
^a $C_7H_{11}NO$. ^b $C_6H_{11}N$.

The base peak occurs at m/e 153, due to the molecular ion a, which gives rise to b (m/e 152) by loss of a hydrogen radical, most probably from C10.

The peak at m/e 138 (c, I 55%) is likely due to the loss of a methyl radical from a; the initial step is fission of the C10–C1 bond and transfer of an unspecified hydrogen atom.

The peak at m/e 125 (d) was shown by high-resolution measurements to have the composition C₇H₁₁NO; its production must have involved elimination of ethylene from the molecular ion. Such behaviour is a consequence of the lactam structure of a (cf. piperid-2-one²); a peak of m/e 125 in the mass spectra of 1- and 3-oxoquinolizidine was due to the loss of carbon monoxide.¹

Further decomposition of d by loss of carbon monoxide (cf. piperid-2-one²) formed e (m/e 97) shown by high resolution measurements to have the composition $C_6H_{11}N$. The metastable peak arising from this fragmentation occurred at m/e 75.0 (calc. m/e 75.25). There followed rearrangement of e to e', then loss of ethylene to form h (m/e 69).


* Department of Pharmacy, University of Sydney, N.S.W. 2006.

¹ Hussain, M., Robertson, J. S., and Watson, T. R., Aust. J. Chem., 1970, 23, 773.

² Duffield, A. M., Budzikiewicz, H., and Djerassi, C., J. Am. chem. Soc., 1964, 86, 5536.

Aust. J. Chem., 1970, 23, 1057-8

The ion f (m/e 84) may arise from a by fission of the C10–C1 bond, transfer of hydrogen to nitrogen, most probably from C3 of the leaving fragment, then rupture of the C4–C5 bond (cf. pyrrolid-2-one²). The radical g (m/e 83) probably arises from molecular ion a as well as from d (m/e 125).

Experimental

The method of Bohlmann *et al.*³ was modified for the synthesis of 4-oxoquinolizidine. 1,1-Diethoxycarbonyl-3-(2-pyridyl)propane⁴ (35 g), Raney nickel W-7 (8 \cdot 0 g), and dioxan (160 ml) were heated at 210-215° under a hydrogen pressure of 135 atm for 2 hr. The catalyst was removed by filtration, the solvent distilled off under reduced pressure, and the product distilled at 2 mm; b.p. 104-106°, n_D^{25} 1.5062 (lit. b.p. 84-86°/0·2 mm). The infrared spectrum confirmed the lactam structure of the compound. The sample was found to be analytically pure by g.l.c. under the conditions described previously.¹

The mass spectrum was recorded using an AEI MS902 double-focusing mass spectrometer operating at an ionizing potential of 70 eV and a source pressure of the order of 10^{-7} mm. Samples were introduced into the ionizing chamber by the direct insertion technique.

Acknowledgment

This work was supported by the Pharmaceutical Society of New South Wales, S. E. Wright Research Trust.

³ Bohlmann, F., Ottawa, N., and Keller, R., Liebigs Ann., 1954, 587, 162.

⁴ Boekelheide, V., and Rothchild, S., J. Am. chem. Soc., 1949, 71, 879.