INFRARED SPECTRA OF SOME BIS(8-AMINO-2-METHYLQUINOLINE)-METAL COMPLEXES. EVIDENCE FOR *CIS* CONFIGURATIONS

By M. R. LITZOW,*[†] L. F. POWER,* and A. M. TAIT*

[Manuscript received March 3, 1970]

Abstract

The infrared spectra of a number of bis- and mono-complexes of 8-amino-2methylquinoline (maq) have been recorded and the possibility of a *cis* configuration of the two bidentate ligands in the bis-chelated complexes is discussed with respect to the complexity in the 850-700 cm⁻¹ region.

INTRODUCTION

Although the small differences in the infrared spectra of geometrical isomers do not provide a general method for the distinction of *cis* and *trans* isomers,¹ several workers have suggested that splitting of in-phase, out-of-plane, C–H bending modes for bis-bipyridyl complexes^{2,3} and for bis-pyridine complexes⁴ can be used as a criterion for the presence of the *cis* isomer. McWhinnie⁵ has reported the absence of splitting of the in-phase, out-of-plane C–H deformation mode for bis-bipyridyl complexes of cobalt(II), nickel(II), and rhodium(II) considered to contain the two bipyridyl ligands in a *trans* configuration. We now report observations on some transition metal complexes of 8-amino-2-methylquinoline.

RESULTS AND DISCUSSION

The ligand 8-amino-2-methylquinoline (maq) shows C–H out-of-plane deformations at 831s, 796m, and 746s cm⁻¹. The spectrum in this region can be interpreted by considering separately the three adjacent ring hydrogen atoms (carbocyclic ring) and the two adjacent ring hydrogen atoms (heterocyclic ring).^{6a} The presence of two adjacent free hydrogen atoms should produce a strong band in the 860–800 cm⁻¹ region.⁷ No strong bands should be present in the 750–700 cm⁻¹ region although weak bands sometimes occur. The strong band at 831 cm⁻¹ in the spectrum of mag

* James Cook University of North Queensland, Townsville, Qld. 4810.

- ² Martin, B., McWhinnie, W. R., and Waind, G. M., J. inorg. nucl. Chem., 1961, 23, 207.
- ³ Beck, W., and Schnierer, E., Chem. Ber., 1962, 95, 3048.
- ⁴ Rao, G. S., Z. anorg. Chem., 1960, 304, 77.
- ⁵ McWhinnie, W. R., J. inorg. nucl. Chem., 1964, 26, 15.
- ⁶ Bellamy, L. J., "The Infra-red Spectra of Complex Molecules." (a) p. 78; (b) p. 281. (John Wiley: New York 1964.)
- ⁷ Bomstein, J., Analyt. Chem., 1953, 25, 512.

Aust. J. Chem., 1970, 23, 1383-5

[†] Present address: Department of Chemistry, University of Indiana, Bloomington, Ind., U.S.A.

¹ Wilkins, R. G., and Williams, M. J. G., in "Modern Coordination Chemistry." (Eds J. Lewis and R. G. Wilkins.) (Interscience: New York 1960.)

can therefore be assigned to the out-of-plane C-H deformation of the two adjacent hydrogen atoms. The related compounds, 2,6- and 2,7-dimethylquinoline, which have only two adjacent free hydrogen atoms in each of the two rings, absorb strongly at 831 cm⁻¹ and 835 cm⁻¹ respectively.⁶

The band of medium intensity at 796 cm⁻¹ is almost certainly associated with the presence of the three adjacent free hydrogens on the carbocyclic ring as aromatic rings with three adjacent hydrogen atoms show an absorption in the 810-750 cm⁻¹ region.⁸ 8-Hydroxyquinoline, containing three adjacent hydrogen atoms in each ring, shows a strong band at 780 cm⁻¹. The strong band at 745 cm⁻¹ in the spectrum of maq is also most likely due to C-H deformations of the three adjacent hydrogen atoms.

The data presented in Figure 1 show that, on coordination of maq, significant shifts occur for the out-of-plane C-H bending modes of the free ligand. The bands at 831 and 745 cm⁻¹ are shifted to higher wave numbers, whilst the band at 796 cm⁻¹ is shifted slightly to shorter wave numbers.

The complex $[Ni(maq)_2(NO_3)](NO_3)^9$ has been shown by a three-dimensional Xray analysis to have a highly distorted octahedral configuration.¹⁰ The two ligand molecules are arranged *cis* to each other, the heterocyclic nitrogen atoms being *trans* as shown in Figure 2. Infrared evidence had previously suggested the presence of a bidentate nitrato group.⁹ The analogous cobalt(II) complex, $Co(maq)_2(NO_3)_2$ also contains a bidentate nitrato group (i.r. bands at 1493s, 1280s, 805m, and 743m cm⁻¹) and is, therefore, most probably octahedral with a *cis* configuration of the two ligand molecules. Both of these complexes show complexity in the infrared in the region of interest.

⁸ Werner, R. L., Kennard, W., and Rayson, D., Aust. J. Chem., 1955, 7, 346.

⁹ Litzow, M. R., Power, L. F., and Tait, A. M., J. chem. Soc. (A), 1970, 275.

¹⁰ Tait, A. M., Ph.D. Thesis, University of Queensland, 1970.

Models indicate that a *trans*-planar arrangement of the two maq molecules is impossible due to steric effects associated with the presence of the methyl groups in the 2-positions. One would expect that in all octahedral bis-maq complexes, the two ligand molecules would occupy similar positions about the metal as that found in $[Ni(maq)_2(NO_3)]NO_3$. If the splitting observed in the 850–750 cm⁻¹ region in the infrared for the nickel(II) and cobalt(II) nitrato complexes is diagnostic of the *cis* isomer of octahedral bis-maq complexes, it should be observed in all of the bis octahedral complexes of maq.

Figure 1 shows the results obtained for a series of complexes of nickel(II)⁹ and copper(II).¹¹ Some degree of splitting is observed in all of the bis octahedral complexes, with the exception of Ni(maq)₂(ClO₄)₂ and in this respect complements the work of McWhinnie.⁵ This evidence for *cis* configuration may not be conclusive, since it is not possible to obtain the corresponding *trans* complexes in order to check if the splitting is absent. The mono-chelated complexes of nickel(II)⁹ and copper(II)¹¹ of type Ni(maq)X₂,xH₂O (X = Cl, Br, I, x = 2, 7/2, 2 respectively) and Cu(maq)X₂ (X = Cl, Br, NO₃) do not show splitting of the in-phase, out-of-plane C–H deformation modes of the ligand molecule.

Fig. 2.—*cis* configuration for bis-maq complexes.

The complex Ni(maq)₂I₂,2H₂O is thought to contain the tetrahedral anion $[Ni(maq)_2]^{2+}$ in the solid.⁹ This compound also shows complexity in the region of interest, possibly indicating that splitting observed in the 850–750 cm⁻¹ region of the spectrum is due to a non-planar arrangement of the two maq molecules. The disposition of the ligand molecules in a regular tetrahedral complex does not differ greatly from that in a *cis*-octahedral complex, so perhaps it is not surprising that splitting is observed in $[Ni(maq)_2]I_{2,2}H_2O$.

Several workers²⁻⁵ have attributed the greater complexity in the spectra of some complexes to the lower symmetry of the *cis*-isomer and $Cotton^{12}$ has pointed out that a surrounding crystal field of symmetry lower than that of the complex may resolve degenerate modes or cause normally infrared-inactive vibrations to become active. For these maq complexes the reason for the absence of splitting of the highest wave-number band for some of the complexes is unknown.

EXPERIMENTAL

Infrared spectra were measured on a Perkin-Elmer 337 grating infrared spectrophotometer. The complexes were prepared as Nujol mulls or ground with potassium bromide to form disks.

- ¹¹ Litzow, M. R., Power, L. F., and Tait, A. M., unpublished data.
- ¹² Cotton, F. A., in "Modern Coordination Chemistry." (Eds J. Lewis and R. G. Wilkins.) (Interscience: New York 1960.)