SHORT COMMUNICATIONS

SITE SPLITTING OF THE MnO₄- VIBRATIONAL MODES IN A KClO₄ LATTICE

By C. G. BARRACLOUGH* and I. BILANDER*

[Manuscript received January 22, 1970]

The present study of the infrared spectrum of potassium permanganate in a solid solution of potassium perchlorate was prompted by a recent reinvestigation and interpretation of the electronic spectrum of potassium permanganate in solid potassium perchlorate solution.¹

The site symmetry of the MnO_4^- ion in the KClO₄ lattice is known² to be C_s . Hence, it would be expected that the triply degenerate F_2 vibrational modes of MnO_4^- would be split into triplets. Also, the A_1 and E modes, which are infrared inactive in T_d symmetry, might be expected to be observed here.

TABLE 1 VIBRATIONAL FREQUENCIES (cm⁻¹) OF KMnO₄ IN A KClO₄ LATTICE AT VARIOUS CONCENTRATIONS ν values at 300 K are ± 2 cm⁻¹, at 80 K ± 1 cm⁻¹

$KMnO_4$ (% w/w)	(at c. 300 K)	(at c. 300 K)	(at c. 80 K)	(at c. 300 K)
0.59	â	931, 915, 909	b	a '
$1 \cdot 1$	a	932, 917, 911	b	a
$2 \cdot 0$	847	932, 916, 909	$935 \cdot 5, 918 \cdot 5, 912 \cdot 5$	^a , 394, 404
$3 \cdot 2$	847	932, 917, 910	ъ	387, 394, 404

^a Not observed, probably because of insufficient concentration of KMnO₄.

^b Not investigated.

Most of the above expectations have been verified (see Table 1). Both the ν_3 (F_2) and ν_4 (F_2) modes were found to be triplets and the ν_1 (A_1) mode was detected. The ν_2 (E) mode was not observed. This is not surprising in view of previous studies³⁻⁵ of the infrared spectrum of KMnO₄. In each case, it was found that the ν_2 (E) mode is not observed in the infrared and is of only medium intensity in the Raman spectrum.⁶

The observed frequencies seemed to be independent of the concentration of $KMnO_4$ in KClO₄ over the concentration range studied.

* Department of Chemistry, University of Melbourne, Parkville, Vic. 3052.

¹ Holt, S. L., and Ballhausen, C. J., Theor. chim. Acta, 1967, 7, 313.

² Teltow, J., Z. phys. Chem. (B), 1938, 40, 400.

³ Krebs, B., and Mueller, A., J. molec. Spectrosc., 1967, 22, 290.

⁴ Pinchas, S., Samuel, D., and Petranu, E., J. inorg. nucl. Chem., 1967, 29, 335.

⁵ Manzelli, P., and Taddei, G., J. chem. Phys., 1969, 51, 1484.

⁶ Hendra, P. J., Spectrochim. Acta (A), 1968, 24, 125.

Aust. J. Chem., 1970, 23, 1471-2

In the case of the ν_3 (F_2) triplet, the frequencies of the triplet were found to rise with a decrease in temperature, but the spacing between them remained constant.

The detailed vibrational fine structure, found by Holt and Ballhausen,¹ in two of the four band systems they observed (particularly the one between 18000 and 23000 cm⁻¹), would be expected to correlate with our findings. However, their assignment of peaks found in the 18000–23000 cm⁻¹ band system does not bear this out. Thus a re-examination of this band system seems warranted.