A RUTHENIUM CHLORO NITROSYL DERIVATIVE OF DITHIOACETYLACETONE

By G. A. Heath* and R. L. Martin*

[Manuscript received July 6, 1970]

Abstract

The novel dithioacetylacetonato complex $[\mathrm{Ru}(C_5H_7S_2)_2(\mathrm{NO})\mathrm{Cl}]$ has been characterized by analytical and spectral methods. A trans configuration is suggested. The electronic spectrum is consistent with the oxidation state II for the coordinated metal ion.

An attempted routine preparation of tris(dithioacetylacetonato)ruthenium(III), $[Ru(SacSac)_3]$ where $SacSac^- = C_5H_7S_2^-$, yielded instead a nitrosyl derivative analytically consistent with the formulation $[Ru(SacSac)_2(NO)Cl]$. Checking revealed that the original starting material, commercial ruthenium trichloride, contained coordinated nitric oxide. The compound has been reprepared from authentic $Ru(NO)Cl_3,H_2O$. We have since confirmed that NO-free commercial trichloride reliably leads to $[Ru(SacSac)_3]$.

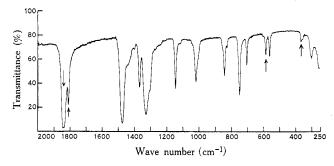
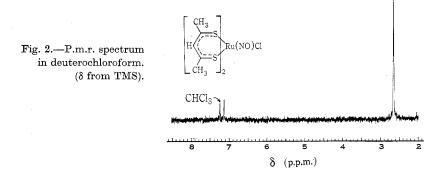


Fig. 1.—Infrared spectrum in KBr disk.

Arrows point to peaks not in spectrum of [Ru(SacSac)₃].


The new diamagnetic complex is a red-brown crystalline material, yielding rose-red solutions in organic solvents. Comparison of the infrared (Fig. 1) and p.m.r. (Fig. 2) spectra with those of well-characterized dithioacetylacetone complexes confirms that the organic ligand is intact and is chelated in the usual way. The presence of NO is established by a strong new band in the infrared spectrum at 1840 cm⁻¹, which is due to the N–O stretching vibration. The splitting of this band when the compound is supported in a potassium halide disk (either KCl or KBr) is ascribed to a lattice effect. Solution spectra exhibit a single symmetric band at 1840 cm⁻¹ yet, if the sample is recovered by evaporation and re-examined in disk form, the splitting returns. Two further new bands, at 580 cm⁻¹ and 300 cm⁻¹, were

^{*} Department of Inorganic Chemistry, University of Melbourne, Parkville, Vic. 3052.

¹ Heath, G. A., and Martin, R. L., Aust. J. Chem., 1970, 23, 1721.

tentatively assigned as Ru–N and Ru–Cl stretching vibrations, respectively. These three absorptions were also observed in the infrared spectrum of $Ru(NO)Cl_3, H_2O$.

The p.m.r. spectrum reveals only two resonances in the intensity ratio 1:6, corresponding to the ring proton and methyl protons respectively. No inequivalence of the methyl groups is evident, an observation which accords with the *trans* formulation (1). In the six-coordinate mixed complexes such as $[Co(SacSac)_2(dpt)]$ (where dptH = diphenyltriazene) the non-equivalence of the SacSac⁻ methyl groups is clearly displayed in the p.m.r. spectrum.²

The suggested coplanar disposition of the chelate rings is known to be stable in the related $[M(SacSac)_2]$ complexes (2) where $M = Co^{II}$, Ni^{II} , Pd^{II} , or $Pt^{II}.^{3,4}$ In contrast, an X-ray study shows that $[Ru(NO)(Et_2NCS_2)_3]$ contains two bidentate dithiocarbamate ligands and one monodentate dithiocarbamate ligand cis to the nitrosyl group, giving an octahedral structure.⁵

The parent ion $[Ru(SacSac)_2(NO)Cl]^+$ and the molecular ions $[Ru(SacSac)_2Cl]^+$ and $[Ru(SacSac)_2]^+$ are the three heaviest species evident in the mass spectrum; $[Ru(SacSac)_2(NO)]^+$ is not observed. The spectrum is characterized by a strong peak at m/e 30 (NO+), whereas there is no ion of this m/e value in the fragmentation pattern of the ordinary dithioacetylacetone complexes.

We have previously observed a striking difference in the electronic spectra of the low-spin $[M(SacSac)_3]$ chelates of the iron(III), ruthenium(III), and osmium(III) (t_{2g}^5)

- ² Heath, G. A., and Martin, R. L., unpublished data.
- ³ Barraclough, C. G., Martin, R. L., and Stewart, I. M., Aust. J. Chem., 1969, 22, 891.
- ⁴ Beckett, R., and Hoskins, B. F., Chem. Commun., 1967, 909.
- ⁵ Domenicano, A., Vaciago, A., Zambonelli, L., Loader, P. L., and Venanzi, L. M., Chem. Commun., 1966, 476.

and cobalt(III), rhodium(III), and iridium(III) (t_{2g} 6) metal ions. ^{1,6} Intense low energy electronic transitions occurring only for the former class were ascribed to charge transfer to the hole in the stabilized metal t_{2g} subshell. Interestingly, these absorptions are absent in the present nitrosyl ruthenium compound (Fig. 3). This supports the

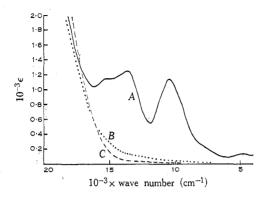


Fig. 3.—Visible and near-infrared spectra in benzene.

A, [Ru(SacSac)₃];

B, [Rh(SacSac)₃];

C, [Ru(SacSac)₂(NO)Cl].

generally accepted contention that nitric oxide may function as a "three-electron donor". We regard [Ru(SacSac)₂(NO)Cl] as formally containing the nitrosonium ion coordinated to ruthenium(II) which has a complete t_{2g} 6 subshell. The observed N–O stretching frequency is well within the range recognized for coordinated NO⁺.7

Polarographic studies on [Ru(SacSac)₂(NO)Cl] in acetone/Et₄NClO₄ reveal two reversible one-electron reductions at the dropping mercury electrode, at -0.27 V and -1.44 V relative to Ag |AgCl |0.1m LiCl (acetone). In comparison, [Ru(SacSac)₃] undergoes a one-electron reduction at +0.04 V and [Rh(SacSac)₃] undergoes a two-electron reduction at -1.05 V, both relative to Ag|AgCl in acetone.⁸

EXPERIMENTAL

Sunthesis

(a) Commercial ruthenium trichloride (1 g, B.D.H., batch No. 008030) and acetylacetone (1 · 5 ml) were dissolved in ethanol (35 ml) and the resulting crimson solution was added to saturated HCl-EtOH solution (20 ml). Hydrogen sulphide was passed in for 20 min at 0° , then the reaction vessel was left loosely sealed in an ice-bath. After a day, the crude crystalline product (0 · 6 g) was collected, washed with ethanol, and dried by suction. The compound was recrystallized by addition of ethanol to a hot saturated chloroform solution (Found: C, 27 · 9; H, 3 · 6; Cl, 7 · 4; N, 3 · 2; Ru, 23 · 8; S, 29 · 1. Calc. for $C_{10}H_{14}ClNORuS_4$: C, 28 · 0; H, 3 · 3; Cl, 8 · 3; N, 3 · 3; Ru, 23 · 6; S, 29 · 9%).

An infrared spectrum of the original commercial ruthenium trichloride indicated the presence of some form of coordinated nitric oxide. This problem has been encountered previously, elsewhere.9

- (B) The preparation was repeated exactly as before using authentic Ru(NO)Cl₃,H₂O (I \cdot 2 g). The same product was obtained in smaller yield (0 \cdot 1 g).
 - ⁶ Heath, G. A., and Martin, R. L., Chem. Commun., 1969, 951.
 - ⁷ Johnson, B. F. G., and McCleverty, J. A., Prog. inorg. Chem., 1966, 7, 277.
 - 8 Bond, A. M., Heath, G. A., and Martin, R. L., "Polarography in Acetone of Tris(dithio-acetylacetonato)-Complexes of Iron(III), Ruthenium(III), Osmium(III), and Rhodium-(III)." J. electrochem. Soc., in press.
 - ⁹ Chatt, J., and Shaw, B. L., J. chem. Soc. (A), 1966, 1811.