p-NITROPHENYL *α*-MALTOSIDE

By P. M. BARNA*

[Manuscript received September 7, 1970]

Several recent reports mention the usefulness of p-nitrophenyl α -maltoside in assaying the activity of α -amylase¹⁻³ or maltosidase.⁴ We undertook to synthesize this compound and examined its usefulness as substrate.

p-Nitrophenyl maltoside was first prepared by Babers and Goebel;⁵ this was reportedly the β -anomer. Matsubara reported the synthesis of the α -anomer by two different routes but the results are contradictory. Nitration of phenyl α -maltoside heptaacetate with a nitrating mixture gives a product melting at 147–150° in one case⁶ and at 176–178° in the other.⁷ Furthermore, the *p*-nitrophenyl maltoside resulting from the deacetylation of the above heptaacetates is reported to have a melting point at 135–136° and a rotation of 281° (*c*, 6 in water) in one paper⁶ and a melting point of 145–146° and a rotation of 265° (*c*, 1 water) in another paper.⁷

Several routes were open for us for the synthesis of this substrate. At the outset, we decided against the nitration procedure because we saw no easy way to prepare the p-nitrophenyl α -maltoside heptaacetate and foresaw difficulties in separating the o-nitrophenyl and p-nitrophenyl maltosides resulting from the nitration.

We could try, however, the method used by Jansen and Wydeveld, who fuse maltose octaacetate and *p*-nitrophenol in the presence of titanium(IV) chloride. No physical constants were available on their products.^{1,8} Emil Fischer's high-temperature fusion of acetyl sugars and phenols in the presence of zinc(II) chloride was possible⁹ and so was the anomerization of the easily prepared β -anomer by a Lewis acid.

In our hands, the fusion methods^{1, 8, 9} produced only intractable tars. Anomerization of the β -anomer⁵ by stirring it with concentrated sulphuric acid in acetic anhydride-acetic acid according to Lindberg¹⁰ did not succeed; no change in rotation was observed in 6 hr. At this point we became intrigued by a report by Bose and Ingle¹¹ who found both anomers in the reaction mixtures of phenols, sugar acetates, tin(IV) chloride, and chloroform. It is known that the alkyl and aryl glycosides form in a two-step reaction in the presence of a Lewis acid; at first the halide ion replaces

Aust. J. Chem., 1971, 24, 673-4

^{*} Calbiochem, P.O. Box 54282, Los Angeles, Cal. 90054, U.S.A.

¹ Jansen, A. P., and Wydeveld, P. G. A. B., Nature, 1958, 182, 525.

² Matsubara, S., J. Biochem., Tokyo, 1961, 49, 226.

³ Matsubara, S., J. Biochem., Tokyo, 1961, 49, 232.

⁴ Tamaoki, H., Murase, Y., Minato, S., and Nakanishi, K., J. Biochem., Tokyo, 1967, 62, 7.

⁵ Babers, F. H., and Goebel, U. F., J. biol. Chem., 1934, 105, 473.

⁶ Matsubara, S., Ikenada, T., and Adabori, S., J. Biochem., Tokyo, 1959, 46, 425.

⁷ Matsubara, S., Bull. chem. Soc. Japan, 1961, 34, 718.

⁸ Jansen, A. P., and Wydeveld, P. G. A. B., personal communication.

⁹ Fischer, E., Ber. dt. chem. Ges., 1916, 49, 2813.

¹⁰ Lindberg, B., Acta chem. scand., 1950, 4, 1386.

¹¹ Bose, J. L., and Ingle, T. R., Chemy Ind., 1967, 1451.

SHORT COMMUNICATIONS

the C1 acetyl group and forms an aceto halo sugar, which, under the reaction conditions, quickly reacts with the alcohol or phenol present. The second step proceeds with a Walden inversion: α -aceto halo sugars invariably produce the β -alkyl or aryl sugar acetates; 1- β -aceto halo sugars, therefore, would produce the desired α -anomers. β -Aceto halo sugars are difficult to prepare because they appear to be thermodynamically less stable than the α -anomers and anomerize to them under most circumstances.¹²

We found that the mild reaction conditions first used by Lemieux¹³ and adopted by Bose¹⁰ gave us the *p*-nitrophenyl α -maltoside heptaacetate in excellent yield as the only product. Deacetylation by ammonia afforded the *p*-nitrophenyl α -maltoside.

 α -Amylase at pH 6.5 was used to test the product enzymatically. Incubation at 30° for 15–60 min (100 mg substrate and 300 international units of α -amylase) produces *p*-nitrophenol, readable on an ultraviolet spectrophotometer at 410 nm.

We have found *p*-nitrophenyl α -maltoside an effective substrate for purified enzyme samples. An enzyme assay can be completed in 10–30 min.

Experimental

Analyses are by Shankman Laboratories, Los Angeles.

A mixture of 40 g (57 mmol) maltose β -octaacetate and 16·4 g (118 mmol) *p*-nitrophenol were dissolved in 250 ml dry chloroform. In a fume hood, 6 ml SnCl₄ was added carefully, and the mixture was refluxed with the exclusion of moisture for 1 hr. After cooling the solution was extracted with 3×200 ml water, washed with 5×100 ml saturated NaHCO₃ solution and with 7×200 ml water. The yellow organic layer was dried over Na₂SO₄. The solvent was evaporated and a small part of the residue was recrystallized from a large amount of boiling Skellysolve B for identification. The white crystals melt at 138–139°, $[\alpha]_D^{23} + 103°$ (*c*, 1 in CHCl₃). *p*-Nitrophenyl β -maltoside heptaacetate melts at 175–176°, $[\alpha]_D^{25} + 33 \cdot 8°$ (*c*, 1 $\cdot 07$ in CHCl₃).⁵ Paper chromatography (in benzene containing 4% MeOH) shows a single spot on H₂SO₄ treatment: we concluded that the material on hand was *p*-nitrophenyl α -maltoside heptaacetate.

The bulk of the solid residue was deacetylated in methanol saturated with ammonia at 5° overnight. The solvent and the ammonia were then chased away and the residue was dissolved in warm absolute ethanol. The faintly yellow solution was treated with charcoal and filtered through a Celite bed. The nearly colourless solution would not yield crystals on concentration or cooling; nor did we get crystallization when fractional crystallization was attempted by seeding a small part of the solution with *p*-nitrophenyl β -maltoside. A slightly gummy white product was obtained when the alcoholic solution was added to stirred anhydrous ether dropwise; on trituration with 1:20 absolute ethanol-anhydrous ether the material soon became crystalline. *p*-Nitrophenyl α -maltoside melts at 105°, $[\alpha]_D^{25}$ is $+134 \cdot 7^\circ$ (c, 1 in H₂O) (Found: C, 46 $\cdot 5$; H, 5 $\cdot 3$; N, 3 $\cdot 0$. Calc. for C₁₈H₂₅NO₃: C, 46 $\cdot 6$; H, 5 $\cdot 4$; N, 3 $\cdot 0^\circ_0$). Paper chromatography showed a single spot on H₂SO₄ treatment. The mother liquor of the product on paper chromatography showed a single spot moving at the same speed with that of the crystals.

The Assay of α -Amylase

The method is similar to that published.¹ Potassium phosphate buffer (pH $6 \cdot 5, 0 \cdot 05M$) was made as follows. Stock solutions of 0.87 g K₂HPO₄ in 100 ml H₂O and 0.68 g KH₂PO₄ in 100 ml H₂O were prepared. To 50 ml KH₂PO₄ solution K₂HPO₄ solution was added until pH $6 \cdot 5$ was obtained. *p*-Nitrophenyl α -maltoside was dissolved in water at a concentration of 200 mg/ml. Assays were run at 30° with a recording spectrophotometer (Beckman DU with a Gilford recording attachment) at 410 nm. To each cuvette $2 \cdot 9$ ml buffer and $0 \cdot 1$ g substrate were added. At zero time 100–1000 maltose international units of α amylase were added and A_{410} was recorded.

¹² Korytnyk, W., and Mills, J. A., J. chem. Soc., 1959, 636.

¹³ Lemieux, R. V., and Shyluk, W. P., Can. J. Chem., 1953, 31, 528.