SUPER-REGENERATIVE DETECTION OF N.Q.R. A STEADY-STATE METHOD

By R. A. CALDWELL* and S. HACOBIAN†

[Manuscript received October 11, 1971]

In a recent communication¹ the detection of nuclear quadrupole resonance (n.q.r.) using a super-regenerative oscillator was analysed in terms of a "transient nutation" approach (see for example ref.²). One prerequisite for the theoretical development of the nuclear induction equations is that of a large r.f. field. As this condition does not generally apply to super-regenerative spectrometers, an alternative approach (namely, a steady-state analysis) will be considered where, providing there is negligible saturation of the spin system, there is no requirement on the absolute magnitude of the r.f. field.

A steady-state analysis of the analogous n.q.r. Bloch equations^{3,4} indicates that the resultant signal, $[\overline{V}_s{}^2]^{1/2}$, at exact resonance is given by

$$[\overline{V_s^2}]^{1/2} \propto H_1 T_2^* / (1 + \xi \gamma^2 H_1^2 T_1 T_2^*) \tag{1}$$

where H_1 is the effective r.f. field in the direction of the coil axis; T_2^* is the apparent spin-spin relaxation time; T_1 is the spin-lattice relaxation time; γ is the magnetogyric ratio; and $\xi = (I \pm m)(I \mp m + 1)$ where the signs indicate the $+m \to +m-1$ or $-m-1 \to -m$ transition respectively. The terms I and m are the nuclear spin and magnetic quantum numbers respectively. This result is applicable to a continuous r.f. field, $2H_1\cos\omega t$, propagated in the direction of the coil axis. Super-regenerative operation involves irradiation by an amplitude modulated r.f. source of average on time, $t_{\rm on}$, and off time, $t_{\rm off}$. A steady-state analysis of the n.q.r. Bloch equations for such an r.f. source⁵ indicates that the signal is given by

$$[\overline{V_s^2}]^{1/2} \propto \frac{H_1[t_{\rm on}/(t_{\rm on} + t_{\rm off})]T_2^*}{1 + \xi \gamma^2 H_1^2[t_{\rm on}/(t_{\rm on} + t_{\rm off})]^2 T_1 T_2^*}$$
(2)

providing the quench frequency, $f_q(=1(t_{\rm on}+t_{\rm off}))\gg 1/T_2^*$. Assuming negligible saturation of the resonance line, i.e.

$$\xi \gamma^2 H_1{}^2 [t_{\rm on}/(t_{\rm on} + t_{\rm off})]^2 T_1 T_2^* \ll 1$$

the result will be equivalent to that of Smith and Tong.⁶ Although it is not possible

- * Department of Agricultural Chemistry, University of Sydney, N.S.W. 2006.
- † Department of Physical Chemistry, University of Sydney, N.S.W. 2006.
- ¹ Caldwell, R. A., and Hacobian, S., Aust. J. Chem., 1970, 23, 1321.
- ² Torrey, H. C., Phys. Rev., 1949, 76, 1059.
- ³ Bloom, M., Hahn, E. L., and Herzog, B., Phys. Rev., 1956, **103**, 148.
- ⁴ Bloom, M., Robinson, L. B., and Volkoff, G. M., Can. J. Phys., 1958, 36, 1286.
- ⁵ Caldwell, R. A., Ph.D. Thesis, University of Sydney, 1970.
- ⁶ Smith, J. A. S., and Tong, D. A., J. scient. Instrum., 1968, No. 1, 8.

to write down an equation in analytic form for a Gaussian line shape it is generally agreed^{7,8} that the result would be in the form

$$[\overline{V_{\rm s}^2}]^{1/2} \propto \frac{H_1[t_{\rm on}/(t_{\rm on} + t_{\rm off})]\pi f(\omega_0)}{1 + \xi \gamma^2 H_1^2[t_{\rm on}/(t_{\rm on} + t_{\rm off})]^2 T_1 \pi f(\omega_0)}$$
(3)

where $f(\omega_0)$ is the magnitude of the normalized line shape function at the central frequency ω_0 .

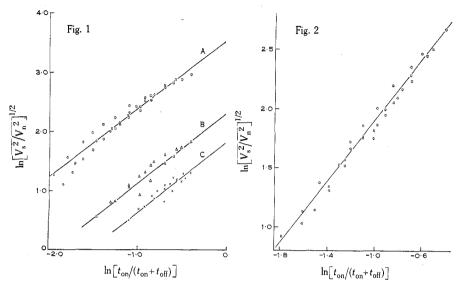


Fig. 1.—35Cl nuclear quadrupole resonance measurements on para-dichlorobenzene containing A, $0\cdot0$; B, $0\cdot5$; c, $1\cdot0$ mol % para-dibromobenzene at room temperature (22°C). The values of $t_{\rm on}$ range between 20 and 60 μ s; $t_{\rm off}$ varies between 30 and 160 μ s. Fig. 2.—35Cl nuclear quadrupole resonance measurements on sodium chlorate at room temperature (22°C). $t_{\rm on}$ 20–60 μ s, $t_{\rm off}$ 30–160 μ s.

Most of the experimental details can be found in refs.^{1,5} The detection equation used is

$$V_{\text{out}}(\text{WA}) \doteq [kaV_0/(t_{\text{on}} + t_{\text{off}})] \ln[\overline{V_s^2}/\overline{V_n^2}]^{1/2}$$
(4)

for $[\overline{V_s^2}/\overline{V_n^2}]^{1/2} \geqslant 4$; $V_{\text{out}}(\text{WA})$ is the output voltage at the operating modulation frequency measured with a Rohde & Schwarz wave analyser; V_0 is the r.f. pulse amplitude monitored by the detector; a is the rise time constant of oscillation build-up in the sample coil of the oscillator and k is a proportionality constant. From equation (2), assuming negligible saturation:

$$\begin{split} \ln[\overline{V_{\mathrm{s}^2}}/\overline{V_{\mathrm{n}^2}}]^{1/2} &= V_{\mathrm{out}}(t_{\mathrm{on}} + t_{\mathrm{off}})/ka \, V_0 \\ &= \ln\!\left[\frac{H_1\{t_{\mathrm{on}}/(t_{\mathrm{on}} + t_{\mathrm{off}})\}T_2^*}{\lceil \overline{V_{\mathrm{n}^2}} \rceil^{1/2}}\right] + \mathrm{constant} \end{split}$$

⁷ Abragam, A., "Principles of Nuclear Magnetism." (Clarendon: Oxford 1961.)

⁸ Redfield, A. G., Phys. Rev., 1955, 98, 1787.

The constant includes such parameters as the coil dimensions, the sample filling factor and the static nuclear susceptibility.^{7,9}

Experimental data are presented in Figure 1 and providing equation (5) is applicable a slope of $1\cdot 0$ is expected (observed $1\cdot 2$). Also included are the results obtained for solid solutions of para-dibromobenzene. Figure 2 is the corresponding plot obtained for sodium chlorate. In Figure 1 the vertical disposition of points will be logarithmically proportional to the inverse line width parameter (or the apparent spin–spin relaxation time) T_2^* , providing all other terms in the right-hand side of equation (5) are constant for the three samples. This ratio is found to be $1:0\cdot 30:0\cdot 18$ in reasonable agreement with the results of Woessner and Gutowsky¹⁰ (1:0·39:0·27).

⁹ Das, T. P., and Hahn, E. L., Solid St. Phys., 1958, Suppl. 1.

¹⁰ Woessner, D. E., and Gutowsky, H. S., J. chem. Phys., 1963, 39, 440.