THE AQUATION OF ACIDOPENTAAQUOCHROMIUM(III) COMPLEXES: A CONSIDERATION OF TRANSITION ENTHALPIES

By H. K. J. POWELL*

[Manuscript received 20 December 1971]

The aquation reaction

$$Cr(H_2O)_5X^{2+} + H_2O \to Cr(H_2O)_6^{3+} + X^-$$
 (1)

is known to proceed by both acid-dependent and acid-independent paths. When HX is a strong acid ($X_{-}^{-} = NO_{3}^{-}$, Cl⁻, Br⁻, I⁻, NCS⁻) the rate expression is

rate = $[complex](k_0 + k_{-1}[H^+]^{-1} + ...)$

with the two specific rate constants corresponding to the reactants $Cr(H_2O)_5X^{2+}$ and $Cr(H_2O)_4(OH)X^+$ respectively.¹⁻⁴ In this paper we consider the "transition enthalpies" for the acid-independent aquation reaction and discuss the nature of the transition state species.

For reaction (1) the transition enthalpy $\Delta H_{\rm T}$ is defined as $\Delta H_{\rm a} - \Delta H_{\rm R}$ where $\Delta H_{\rm a}$ is the activation enthalpy and $\Delta H_{\rm R}$ is the enthalpy change for the reaction.^{5,6} $\Delta H_{\rm T}$ measures the heat content of the transition state species relative to the enthalpy of formation of the reaction products. For an associative mechanism $\Delta H_{\rm T}$ will vary with the leaving group X whereas for a dissociative mechanism[†] $\Delta H_{\rm T}$ will be independent of X.⁶ For the base hydrolysis⁶ and the aquation⁷ reaction of complexes Co(NH₃)₅X²⁺ an observed constant value of $\Delta H_{\rm T}$ suggests a dissociative mechanism with the leaving group substantially dissociated and solvated in the transition state.

Table 1 presents values of ΔH_a , ΔH_R , and ΔH_T for reaction (1). The observed spread of values for ΔH_T ($6 \cdot 4 \pm 1 \cdot 3$ kcal mol⁻¹) is larger than for the base hydrolysis⁶ ($2 \cdot 0$ kcal mol⁻¹, six compounds) or the aquation⁷ ($2 \cdot 9 \pm 1 \cdot 3$ kcal mol⁻¹, four compounds) of Co(NH₃)₅X²⁺. The enthalpy of hydration of the leaving group X is increasingly exothermic in the sequence H₂O, NO₃⁻, Br⁻, Cl^{-8,9} and the data in

⁴ Postmus, C., and King, E. L., J. phys. Chem., 1955, 59, 1216.

⁵ House, D. A., and Powell, H. K. J., Chem. Commun., 1969, 383.

- ⁶ House, D. A., and Powell, H. K. J., Inorg. Chem., 1971, 10, 1583.
- 7 Powell, H. K. J., Inorg. nucl. Chem. Lett., in press.
- ⁸ U.S. National Bureau of Standards, "Selected Values of Chemical Thermodynamic Properties." U.S. natn. Bur. Stand. Tech. Note 270-3.

⁹ Dasent, W. E., "Inorganic Energetics." (Penguin: London 1970.)

Aust. J. Chem., 1972, 25, 1569-70

^{*} Chemistry Department, University of Canterbury, Christchurch, New Zealand.

[†] The terms "associative" and "dissociative" are defined in ref. 6.

¹ Swaddle, T. W., J. Am. chem. Soc., 1967, 89, 4338.

² Swaddle, T. W., and King, E. L., Inorg. Chem., 1965, 4, 532.

⁸ Guthrie, F. A., and King, E. L., Inorg. Chem., 1964, 3, 916.

SHORT COMMUNICATIONS

Table 1 show that the instability of the transition state species relative to the reaction products (i.e. $\Delta H_{\rm T}$) increases in this order. These results suggest⁶ that in the transition state the leaving group X is less strongly dissociated and solvated in the reaction of the chromium compounds than in the reaction of the analogous cobalt compounds.

TABLE 1							
ENTHALPY DATA	(kcal mol^{-1}) for the reaction, in aqueous solution						
$\mathrm{Cr}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{X}^{2+} + \mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{Cr}(\mathrm{H}_{2}\mathrm{O})_{6}{}^{3+} + \mathrm{X}$							

	$X = H_2O$	$X = Cl^-$	X == Br-	$X = SCN^{-}$	$X = NO_3^-$
$\Delta H_{\rm R}$	0.0	$-6.6+0.5^{a}$	-5.1 ± 0.2^{b}	$1 \cdot 4 + 0 \cdot 2^{\circ}$	-4.5 ± 0.2^{d}
ΔH_{a}	$26 \cdot 1 \pm 1 \cdot 0^{ ext{e}}$	$24 \cdot 3 \pm 0 \cdot 2^{\mathrm{f}}$	$23 \cdot 8 \pm 0 \cdot 3^{\mathrm{g}}$	$27 \cdot 5h$	$21 \cdot 6 \pm 0 \cdot 1^{i}$
ΔH_{T}	$26 \cdot 1 \pm 1 \cdot 0$	30.9 ± 0.7	$28 \cdot 9 \pm 0 \cdot 5$	$25 \cdot 9 \pm 0 \cdot 4^{0,11}$ 26 · 1	$26 \cdot 1 \pm 0 \cdot 3$
				$24\cdot5\pm0\cdot6$	

^a Schug, K., and King, E. L., J. Am. chem. Soc., 1958, 80, 1089.

^b Espensen, J. H., and King, E. L., J. phys. Chem., 1960, 64, 380.

^c Poulsen, K. G., Bjerrum, J., and Poulsen, I., Acta chem. scand., 1954, 8, 921.

^d Ardon, M., and Sutin, N., Inorg. Chem., 1967, 6, 2268.

° Hunt, J. P., and Plane, R. A., J. Am. chem. Soc., 1954, 76, 5960 ($\Delta H_a = E_{-1}^{\circ} - RT$ assuming a unimolecular reaction).

^f Ref. 2.

^g Ref. 3.

^h Ref. 4; $\Delta H_a = E_a - RT$.

ⁱ Ref. 1.

This deduction is consistent with the observed^{1,2} correlation between $S_{\mathbf{x}}^{\circ}$ (corrected for rotation of X⁻) and ΔS^{\ddagger} for reaction (1):

 $\Delta S^{\ddagger} = pS_{\mathbf{x}}^{\circ} + C$ (X = Cl⁻, Br⁻, I⁻, NO₃⁻, SCN⁻)

where p = 0.53. In contrast $p \approx 1.0$ for $Co(NH_3)_5 X^{2+}$ aquation, and for this reaction linear free energy¹⁰ and transition enthalpy⁷ correlations indicate that the leaving group X is substantially dissociated and solvated in the transition state.

¹⁰ Langford, C. H., Inorg. Chem., 1965, 4, 265.