ACID DISSOCIATION CONSTANTS OF TETRACYANOHYDROXOOXOMOLYBDATE(Iv) ION

By M. Aijaz Beg,* Kabir-ud-Din,* and R. A. Khan*

[Manuscript received 27 June 1972]
Abstract
The third dissociation constant of tetracyanohydroxooxomolybdic acid, $\mathrm{H}_{3}\left[\mathrm{MoO}(\mathrm{OH})(\mathrm{CN})_{4}\right]$, has been obtained in the temperature range $25-50^{\circ} \mathrm{C}$ from the pH -titration curve of its tripotassium salt against hydrochloric acid. The values of $\mathrm{p} K_{3}$ fitted an equation of Harned-Robinson type:

$$
\mathrm{p} K_{3}=(1730 \cdot 72 / T)-6 \cdot 19+0 \cdot 0308 T
$$

obtained by the method of least squares.
Thermodynamic quantities $\Delta G^{\circ}, \Delta H^{\circ}, \Delta S^{\circ}$, and ΔC_{p}° for the process have been evaluated at $30^{\circ} \mathrm{C}$.

The interaction of tetracyanohydroxooxomolybdate(Iv) ion with simple as well as complex metal ions, ${ }^{1,2}$ its oxidation-reduction properties, ${ }^{3}$ and reduction at a dropping mercury electrode ${ }^{4}$ have been reported earlier. This communication deals with the determination of thermodynamic dissociation constants of this anion and the related thermodynamic quantities.

Experimental

Blue $\mathrm{K}_{3}\left[\mathrm{MoO}(\mathrm{OH})(\mathrm{CN})_{4}\right]$ was prepared by Jakob's ${ }^{5}$ method as modified and reported earlier. ${ }^{1-3}$ Its solution strength was determined potentiometrically by titrating against potassium hexacyanoferrate(III). ${ }^{3}$

Determination of Dissociation Constants

The acid dissociation constants were determined from acidimetric titration curves. Aqueous solutions ($0 \cdot 02 \mathrm{M}$) of tripotassium tetracyanohydroxooxomolybdate(Iv) were titrated with 0.1 m aqueous hydrochloric acid and the concomitant change in the pH was read with a Beckman G pH-meter using glass (Beckman 40485) and calomel (Beckman 39970) electrodes. The pH-meter was calibrated with reference to a 0.05 m potassium hydrogen phthalate solution which has pH values known at several temperatures. ${ }^{6}$ Ionic strengths were maintained by adding appropriate concentrations of potassium chloride.

A typical titration curve (at $30^{\circ} \mathrm{C}$) is given in Figure 1. It shows two inflection points corresponding to the addition of 1 and approx. 3 equiv. of H^{+}per mole of the complex. The apparent equilibrium constants ($\mathrm{p} K_{3}^{\prime}$) were obtained from the half-equivalence points of the first segment.

* Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India.
${ }^{1}$ Kabir-ud-Din, and Beg, M. A., J. Indian chem. Soc., 1968, 45, 455; 1969, 46, 503.
${ }^{2}$ Kabir-ud-Din, Khan, A. A., and Beg, M. A., J. electroanal. Chem., 1968, 19, 175.
${ }^{3}$ Beg, M. A., Khan, A. A., and Kabir-ud-Din, J. electroanal. Chem., 1968, 18, 187.
${ }^{4}$ Beg, M. A., Kabir-ud-Din, and Khan, R. A., J. inorg. nucl. Chem., in press.
${ }^{5}$ Jakob, Z., Roczn. Chem., 1957, 31, 681.
${ }^{6}$ Kaye, G. W. C., and Laby, T. H., "Physical and Chemical Constants," 12 th Edn, p. 148 (Longmans: London 1959).

Materials

Reagent grade chemicals were used throughout. Doubly distilled water served as the solvent. To obviate oxidation, experiments were carried out in a nitrogen atmosphere. Prior to use nitrogen was purified by bubbling through chromous chloride and alkaline pyrogallol solutions and equilibrated with the solvent. Experiments were performed at constant temperature.

Results and Discussion

Potentiometric titrations of tripotassium tetracyanohydroxooxomolybdate(Iv) with hydrochloric acid showed two inflection points. The first inflection occurs at a pH between $6 \cdot 65$ to $7 \cdot 5$. This corresponds to the formation of dibasic complex $\left[\mathrm{Mo}(\mathrm{OH})_{2}(\mathrm{CN})_{4}\right]^{2-}$ due to the addition of one proton $\left(\mathrm{H}^{+}\right)$to the predominating species $\left[\mathrm{MoO}(\mathrm{OH})(\mathrm{CN})_{4}\right]^{3-}$. The pH at the mid-point of first segment is taken to be equal to $\mathrm{p} K_{3}^{\prime}$.

The equivalence points were determined from the derivative plot $\Delta \mathrm{pH} / \Delta V$. The half-equivalence points in the titrations were then calculated and the pH values were found at these points. The $\mathrm{p} K_{3}^{\prime}$ values obtained from several independent measurements lie within $\pm 0.15\left(\pm 0.25\right.$ at 30° and $\left.\mu=0.4\right)$.

When 3 equiv. of H^{+}were added a second inflection point was obtained. Addition of more acid followed the appearance of a green gel-like precipitate, which on the addition of more acid, disappeared. Thus, at the end of titration (c. 15 equiv. of H^{+}) the solution was clear and its colour was brownish-green.

These reactions may be explained on the basis of formation of a colloidal solution (green) of the basic molybdenum cyanide. Coagulation occurs after some time and a green precipitate separates out. This substance is a product of the breakdown of the dibasic complex in accordance with the reaction:

$$
\left[\mathrm{Mo}(\mathrm{OH})_{2}(\mathrm{CN})_{4}\right]^{2-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{HCN}+\mathrm{Mo}(\mathrm{OH})_{2}(\mathrm{CN})_{2} \quad \text { (green precipitate) }
$$

This basic cyanide dissolves slowly in excess of the acid:

$$
\mathrm{Mo}(\mathrm{OH})_{2}(\mathrm{CN})_{2}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{HCN}+\mathrm{MoO}^{2+}+\mathrm{H}_{2} \mathrm{O}
$$

A similar sequence of reactions has been proposed for the analogous tungsten compound. ${ }^{7}$ The compound $\mathrm{Mo}(\mathrm{OH})_{2}(\mathrm{CN})_{2}$ had been prepared earlier ${ }^{8}$ and its sulphur derivative, $\operatorname{MoS}(\mathrm{CN})_{2}$, is also known. ${ }^{9}$

Fig. 2.-Extrapolation to zero ionic strength of $\mathrm{p} K_{3}^{\prime}$ values observed at different temperatures.

The acid $\mathrm{p} K_{3}^{\prime}$ at 16° has been calculated from hydrolysis studies to be $8 \cdot 74 .{ }^{7}$ This value has been determined by us for a wide range of temperature and ionic strength, in good agreement with the value reported from hydrolysis data. We have also determined the thermodynamic constants at different temperatures from extrapolation of $\mathrm{p} K_{3}^{\prime}$ values against the corresponding ionic strength, μ (Fig. 2). Values obtained from extrapolation are:

Temp. $\left({ }^{\circ} \mathrm{C}\right)$	25	30	35	40	45	50
$\mathrm{p} K_{3}$	8.81	8.86	8.90	8.97	9.04	9.13

The variation of $\mathrm{p} K_{3}$ with temperature is given by a Harned-Robinson equation: ${ }^{10}$

$$
\begin{equation*}
\mathrm{p} K_{3}=A^{*} / T-D^{*}+C^{*} T \tag{1}
\end{equation*}
$$

The $\mathrm{p} K_{3}$ data were treated (by use of a computer) by a least-squares method in which the fit of the data to a wide range of sets of possible values could be tested and the significance of any particular value assessed. The program was run on an IBM 1130 computer. The following equation was obtained:

$$
\begin{equation*}
\mathrm{p} K_{3}=(1730 \cdot 72 / T)-6 \cdot 19+0 \cdot 0308 T \tag{2}
\end{equation*}
$$

The maximum deviations in $\mathrm{p} K_{3}$ values obtained from this equation, and those found experimentally, lie within ± 0.02 unit. Thermodynamic quantities at 30° derived from this equation ${ }^{11}$ are $\Delta G^{\circ}+12264 \mathrm{cal} \mathrm{mol}^{-1}, \Delta H^{\circ}-5016 \mathrm{cal} \mathrm{mol}^{-1}$, $\Delta S^{\circ}-57 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}, \Delta C_{\mathrm{p}}^{\circ}-85 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$.

Acknowledgment

The authors are grateful to Professor Wasiur Rahman for providing research facilities.

[^0]
[^0]: ${ }^{7}$ Litvinchuk, V. M., and Mikhalevich, K. N., Ukr. khim. Zh., 1959, 25, 563.
 ${ }^{8}$ Jakob, W. F., and Turkiewicz, E., Roczn. Chem., 1932, 12, 576.
 ${ }^{9}$ Sergeeva, A. N., and Litvinchuk, V. M., Scient. Works L'vov Polytech. Inst., Chem.-Technol. Series, 1958, No. 3, p. 28.
 ${ }^{10}$ Harned, H. S., and Robinson, A. R., Trans. Faraday Soc., 1940, 36, 973.
 ${ }^{11}$ Harned, H. S., and Owen, B. B., "The Physical Chemistry of Electrolytic Solutions," 3rd Edn, p. 665 (Reinhold: New York 1958).

