STEROIDAL ALKALOIDS OF MARSDENIA ROSTRATA

II.* THE ISOLATION AND STRUCTURE OF A NEW ALKALOID, ROSTRATAMINE

By E. Gellert† and R. E. Summons†‡

[Manuscript received 22 January 1973]

Abstract

A new alkaloid, rostratamine, was isolated from *Marsdenia rostrata* (Asclepia-daceae). Its structure was elucidated as deacetylmetaplexigenin 12-nicotinate.

We have previously reported¹ the presence of two alkaloids, rostratine and dihydrorostratine, in *Marsdenia rostrata* R.Br. of the Asclepiadaceae family. This paper describes the isolation and structure elucidation of a third new alkaloid from the Wollongong collection of the same plant material.

Rostratamine (1) has the molecular formula $C_{27}H_{35}NO_7$, and m.p. 277–279°. It was isolated from the alkaloid mixture by chromatography on silica gel impregnated with silver nitrate. Spectral evidence clearly indicated it to be a nicotinoyl ester of a polyhydroxypregnane which was shown, by hydrolysing rostratamine, to be deacetylmetaplexigenin. Its n.m.r. spec-

trum²⁻⁴ shows a doublet at δ 9·05 (J 1·5 Hz), two quartets at 8·70 (J 4·5 and 1·5 Hz) and 7·43 (J 4·5 and 8·0 Hz), and a pair of triplets at δ 8·24 (J 8·0 Hz) characteristic of the C2', C6', C5', and C4' protons of a 3-substituted pyridine ring system. The three three-proton singlets at δ 2·09, 1·60, and 1·15 are assigned to the C21, C18, and C19 methyl protons of the pregnane ring system. The broad one-proton signal at δ 5·35 is assigned to the C6 vinylic proton at the 5,6 double bond. The single proton multiplet at δ 3·37 represents the α -proton on a hydroxylated C3, while the one-proton quartet at δ 4·90 (J 5·0 and 11·0 Hz) represents the α -proton on C12 when the hydroxyl group on C12 is esterified.² (If this hydroxyl group is not esterified the

- * Part I, Phytochemistry, 1972, 11, 3335.
- † Chemistry Department, Wollongong University College, Wollongong, N.S.W. 2500.
- ‡ Present address: Genetics Department, Stanford University Medical School, Stanford, Cal., U.S.A.
 - ¹ Summons, R. E., Ellis, J., and Gellert, E., Phytochemistry, 1972, 11, 3335.
 - ² Schaub, F., Kaufmann, H., Stöcklin, W., and Reichstein, T., Helv. chim. Acta, 1968, 51, 338.
 - ³ Shimizu, Y., Sato, Y., and Mitsuhasi, H., Chem. Pharm. Bull., Tokyo, 1969, 17, 2394.
 - ⁴ Yamagishi, T., and Mitsuhasi, H., Chem. Pharm. Bull., Tokyo, 1972, 20, 2070.

 α -proton signal appears between δ 3·9 and 4·0.) The mass spectrum^{5,6} shows ready losses of water and of an acetyl (m/e 43) fragment (but no acetic acid) which indicates the presence of an acetyl side chain on C 17 of polyhydroxy steroid molecules. The strong peaks at m/e 123 and 124 in conjunction with the loss of m/e 123 fragments in various combinations are indicative of an esterifying nicotinoyl group, probably on C 12. That the nicotinoyl group is located on the C 12 hydroxyl group and consequently rostratamine has structure (1) was shown, in addition to the n.m.r. data, also by the characteristic fragments observed in the mass spectrum,^{5,6} e.g. m/e 138 and 139 together with their anhydro derivatives at m/e 120 and 121, and m/e 181 together with its anhydro derivatives at 163 and 145 when ring B is cleaved, or m/e 193 (with 175) and m/e 169 together with m/e 223 and 113 (with 95) when ring C is cleaved.

Experimental

Microanalyses were carried out by the Microanalytical Laboratory, Chemistry Department, Stanford University. The n.m.r. data were obtained on a Varian HA-100 instrument in $CDCl_3/CH_3OD$ solution using SiMe₄ as the internal reference. The mass spectrum was measured on a Varian Mat 711 instrument at 70 eV.

The alkaloid mixture from the Wollongong collection of *Marsdenia rostrata* was chromatographed on a preparative thin-layer plate prepared from silica gel GF 254 (Merck) impregnated with 25% AgNO₃ using CHCl₃: MeOH (9:1) as the developing solvent. Extraction of the appropriate zone (R_F 0·40) gave *rostratamine* in colourless needles from MeOH and Et₂O (Found: C, 67·0; H, 7·4; N, 2·7. C₂₇H₃₅NO₇ requires C, 66·8; H, 7·3; N, 2·9%). [α] $_{2}^{2}$ -32±1° (c, 1·0 in MeOH). Mass spectrum: m/e 486 (0·2%), protonated parent ion; 485 (0·1), M⁺; 467 (0·2), M⁺ - H₂O; 459 (0·3), M⁺ - 2×H₂O; 442 (1·7), M⁺ - acetyl; 424 (0·6), M⁺ - H₂O - 43; 406 (0·4), M⁺ - 2×H₂O - 43; 362 (0·6), M⁺ - nicotinic acid; 344 (0·8), M⁺ - H₂O - 123; 326 (0·7), M⁺ - 2×H₂O - 123; 319 (1·5), M⁺ - 123 - 43; 301 (7·5), M⁺ - H₂O - 123 - 43; 283 (15), M⁺ - 2× H₂O - 123 - 43; 265 (8·0), M⁺ - 3× H₂O - 123 - 43; 223 (8·0), C₁₃H₁₉O₃; 193 (5·0), C₁₂H₁₇O₂; 181 (9·0), C₁₀H₁₃O₃; 175 (8·0), 193 - H₂O; 169 (7·0), C₉H₁₃O₃; 163 (21), 181 - H₂O; 145 (36), 163 - H₂O; 139 (19), C₉H₁₅O; 138 (11·0), C₉H₁₄O; 124 (100), protonated nicotinic acid; 123 (60), nicotinic acid; 121 (51), 139 - H₂O; 120 (39), 138 - H₂O; 113 (49), C₆H₉O₂; 106 (100), nicotinoyl; 95 (41), 113 - H₂O; 78 (99), pyridyl; 43 (100), acetyl.

Rostratamine (5 mg) was refluxed in 5% methanolic KOH for 3 hr, cooled, diluted with water, and extracted with CHCl₃. Evaporation of the solvent gave deacetylmetaplexigenin, m.p. 218–222° (lit. ⁵ 218–223°), identical with a sample obtained from authentic metaplexigenin (t.l.c., mixed m.p., mass spectrum).

⁵ Kapur, B. M., Allgeier, H., and Reichstein, T., Helv. chim. Acta, 1967, 50, 2147.

⁶ Saner, A., Stöckel, K., and Reichstein, T., Helv. chim. Acta, 1972, 55, 1221.