The Anisotropy of the Aliphatic C-C Bond

R. K. Pierens

School of Chemistry, University of Sydney, N.S.W. 2006.

Abstract

In the conformational analysis of organic molecules by electric birefringence and Rayleigh scattering techniques, the value assigned to the aliphatic C-C bond, γ^{C-C} , is of fundamental importance. This communication discusses the implications of recent changes in the experimental parameters used to derive γ^{C-C} .

Molecular polarizability measurements have proved to be very useful for the examination of the solution state conformations of molecular species.¹ A corner-stone of this technique, when applied to the conformational analysis of organic molecules, is the value assigned to the bond polarizability anisotropy γ^{C-C} (= $b_L^{C-C} - b_T^{C-C}$),* of the axially symmetric C(sp³)-C(sp³) bond. Neither γ nor b_L and b_T for individual bonds can be rigorously extracted² from molecular polarizability tensors obtained from experimental data. For example, in the case of alkane molecules with tetrahedral bond angles, the determinable polarizability parameter^{3,4} is

 $\Gamma = \gamma^{\rm C-C} - 2\gamma^{\rm C-H}$

Le Fèvre *et al.*⁵ after reviewing previous determinations of the anisotropic polarizability of the C-H bond and from other considerations, argued for the retention of the assumption^{6,7} that the C-H bond is isotropically polarizable. This assumption, together with the values for Γ (= 0.7±0.3) and Σb_i^{C-C} (= $b_L^{C-C} + 2b_T^{C-C} = 1.491$) derived in ref. ⁵, yielded $b_L^{C-C} = 0.97$, $b_T^{C-C} = b_V^{C-C} = 0.26$. Redeterminations of the Kerr constants of carbon tetrachloride⁸ and cyclohexane⁹ (parameters used by

* Bond polarizability semi-axes $(b_{\rm L}, b_{\rm T}, b_{\rm y})$ are quoted throughout in 10^{-24} cm³ units.

¹ Le Fèvre, C. G., and Le Fèvre, R. J. W., in 'Physical Methods of Chemistry' (Ed. A. Weissberger and B. Rossiter) (John Wiley: New York 1972).

- ² Smith R. P., and Mortensen, E. M., J. chem. Phys., 1960, 32, 508.
- ³ Sack, R. A., J. chem. Phys., 1956, 25, 1087.
- ⁴ Smith, R. P., and Mortensen, E. M., J. chem. Phys., 1960, 32, 502.
- ⁵ Le Fèvre, R. J. W., Orr, B. J., and Ritchie, G. L. D., J. chem. Soc. (B), 1966, 273.
- ⁶ Le Fèvre, C. G., and Le Fèvre, R. J. W., Rev. pure appl. Chem., 1955, 5, 201.
- ⁷ Le Fèvre, C. G. and Le Fèvre, R. J. W., Chemy Ind., 1955, 1121.
- ⁸ Le Fèvre, R. J. W., and Solomons, S. C., Aust. J. Chem., 1968, 21, 1703.
- ⁹ Le Fèvre, R. J. W., and Pierens, R. K., Aust. J. Chem., 1972, 25, 413.

Le Fèvre et al.⁵) together with recently reported¹⁰⁻¹² divergent estimates of Γ (see Table 1) have raised the question of whether the bond polarizability semi-axes quoted above should be modified. Table 1 contains the recalculated Γ values from ref.⁵ for cyclohexane both as the pure liquid and as a solute in carbon tetrachloride.

Table 1. Estimates of 1		
Authors	Г	Comments
	From	cyclohexane
Le Fèvre et. al. ^{5,9}	0.75	pure liquid, λ 589 nm
Le Fèvre et. al. ^{5,8}	0.65	solute in CCl ₄ , λ 589 nm
Foulani and Clement ¹⁰	0.70	pure liquid, λ 546 nm
	From	n-alkanes
Bothorel ¹¹	0.87	for pure liquids and in solution, λ 546 nm
Patterson and Flory ¹²	0 · 54 ^A	solute in CCl ₄ , λ 633 nm

^A Calculated for a model in which the angles deviate from the tetrahedral value.

From the absolute intensities of Raman scattering of methane and benzene, Yoshino and Bernstein¹³ determined γ^{C-H} to be ± 0.312 and 0 respectively. Unfortunately, the sign ambiguity is not resolved by the above technique. If the positive and zero experimental measurements of γ^{C-H} as well as the extremes of Γ in Table 1 are used, the range of possible values for γ^{C-C} emerges as 0.54-1.49. These data, in conjunction with $\Sigma b_i^{C-C} = 1.491,^5$ yield polarizability semi-axes for the C-C bond of $b_L^{C-C} = 0.86-1.49$ and $b_T^{C-C} = b_V^{C-C} = 0.32-0$. Some workers have arbitrarily chosen to let γ^{C-H} be $0.21,^{12,14-16}$ However, the arguments given by Le Fèvre, Orr and Ritchie⁵ in favour of the assumption that the C-H bond is isotropically polarizable are still valid. Hence, if the assumption that $\gamma^{C-H} = 0$ is used along with the mean value of Γ (0.70±0.17) obtained from Table 1, the parameters $b_{\rm L}^{\rm C-C} = 0.96, b_{\rm T}^{\rm C-C} =$ $b_V^{C-C} = 0.26$ are obtained. Clearly, these values are in accord with the bond polar-izability semi-axes ($b_L^{C-C} = 0.97$, $b_T^{C-C} = b_V^{C-C} = 0.26$) currently used by the Sydney group.

Manuscript received 2 July 1973

¹⁰ Foulani, P and Clement, C., Bull. Soc. chim. Fr., 1969, 3462.

- ¹³ Yoshino, T., and Bernstein, H. J., J. molec. Spectrosc., 1958, 2, 241.
- ¹⁴ Fourche, G., and Bothorel, P., J. chim. Phys., 1969, 66, 54.

¹¹ Bothorel, P., J. Colloid Interfac. Sci., 1968, 27, 529.

¹² Patterson, G. D., and Flory, P. J., J. chem. Soc. Faraday II, 1972, 1098.

¹⁵ Denbigh, K. G., Trans. Faraday Soc., 1940, 36, 936.

¹⁶ Bunn, C. W., and Daubenny, R. P., Trans. Faraday Soc., 1954, 50, 1173.