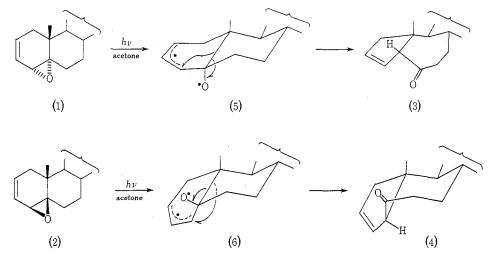
Photolysis of 4,5-Epoxycholest-2-enes


James M. Coxon and Gregory S. C. Hii

Department of Chemistry, University of Canterbury, Christchurch, New Zealand.

Abstract

Photolysis of 4α ,5-epoxy- 5α - and 4β ,5-epoxy- 5β -cholest-2-enes in acetone (3000-Å lamps) effects molecular rearrangement to A-nor-B-homo- 5β - and -5α -cholest-2-en-6-ones respectively.

The photolysis of α,β -epoxy olefins has received relatively little attention.¹ We now report the photolysis of two steroid epoxy alkenes of this type. The epoxides, $4\alpha,5$ epoxy- 5α - and $4\beta,5$ -epoxy- 5β -cholest-2-enes (1) and (2), were prepared by solvolysis of $4\alpha,5$ -epoxy- 5α -cholestan- 3α -yl tosylate in collidine and $4\beta,5$ -epoxy- 5β -cholestan- 3β -yl tosylate by heating with Li₂CO₃-dimethylformamide respectively.²

The α -epoxide (1) was irradiated at 3000 Å for 10 h and gave a good yield (60%) of A-nor-B-homo-5 β -cholest-2-en-6-one (3). The identity of this compound follows from the infrared carbonyl absorption at ν_{max} 1709 cm⁻¹, from the absence of a conjugated chromophore as shown by the ultraviolet spectrum, and from the p.m.r. spectrum which shows two vinyl protons and C 5–H deshielded by alkene and carbonyl moieties.

¹ Bauer, D. von, Iizuka, T., Schaffner, K., and Jeger, O., *Helv. Chim. Acta*, 1972, 55, 852; Kristinsson, H., Mateer, R. A., and Griffin, G. W., *Chem. Commun.*, 1966, 415; Becker, R. S., Bost, R. O., Kolc, J., Bertoniere, N. R., Smith, R. L., and Griffin, G. W., *J. Am. Chem. Soc.*, 1970, 92, 1302.
² Coxon, J. M., Garland, R. P., Hartshorn, M. P., and Lane, G. A., *Tetrahedron*, 1970, 1533.

The structure was further established by hydrogenation to A-nor-B-homo-5 β -cholestan-6-one, a known compound.³

Irradiation of the β -epoxide (2) was less efficient and gave A-nor-B-homo-5 α -cholest-2-en-6-one (4), which proved difficult to purify and was not obtained in a crystalline form. The identity of this product follows from the carbonyl absorption in the infrared spectrum at v_{max} 1709 cm⁻¹, the p.m.r. spectrum which showed two olefinic protons and C5-H deshielded by the alkene and ketone groups and by conversion into the known A-nor-B-homo-5x-cholestan-6-one by hydrogenation. The ketone produced was impure, and attempts to purify it resulted in epimerization to the equilibrium mixture of 5α - and 5β -isomers. The crystalline 5β -isomer was treated with aqueous sulphuric acid in dioxan to produce an equilibrium mixture (c. 4: 1) of 5α - and 5β -ketones. These molecular rearrangements are not without precedent and 2,5-dimethyl-4,5-epoxyhex-2-ene has been reported⁴ to give 3,5-dimethylhex-4-en-2one. The yield of A-nor-B-homo-5 β -cholest-2-en-6-one from irradiation of 4α ,5 $epoxy-5\alpha$ -cholest-2-ene makes this a viable route to C 3- and in particular C2-substituted A-nor-B-homo C6-ketones. The reactions are believed to occur by acetonesensitized excitation of the starting epoxides followed by C-O bond cleavage to give allylic oxygen biradicals (5) and (6) respectively. Stereospecific migration of the $C_{10}-C_5$ bond to C4 for each compound results in the formation of ketones (3) and (4).

Experimental

Infrared spectra were recorded on a Shimadzu IR27G spectrophotometer, ultraviolet spectra on a Shimadzu MPS-50L instrument and n.m.r. spectra on a Varian A60 or T60 spectrometer for $CDCl_3$ solutions with $CHCl_3$ and $SiMe_4$ as internal standards. Optical rotatory dispersion measurements were recorded on a Jasco ORD/UV-5. Mass spectra were recorded on an A.E.I. MS902 spectrometer. Alumina used for chromatography was Spence grade H deactivated by the addition of 5% v/v of 10% acetic acid. Photolyses were carried out in a Rayonet photochemical reactor.

Photolysis

(A) $4\alpha_5$ -*Epoxy*- 5α -*cholest*-2-*ene*.—A solution of $4\alpha_5$ -epoxy- 5α -cholest-2-ene (177 mg) in dry degassed acetone in a nitrogen atmosphere was irradiated (3000 Å) in a Pyrex container for 10 h. After removal of solvent the residue was adsorbed onto alumina (20 g). Elution with light petroleum-ether (100:2) gave a trace of starting epoxide (10 mg) and A-nor-B-homo- 5β -cholest-2-en-6-one (108 mg) crystallized as *plates* from methanol, m.p. $83-84^{\circ}$, ν_{max} 1709 cm⁻¹. λ^{MeoH} 230 nm (ϵ 20), 240 (20). P.m.r. δ 0.72 (C18–H₃), 0.82 and 0.90 (side chain methyls), 1.15 (C19–H₃), 3.58 ($W_{h/2}$ 6 Hz, C 5–H), 5.55 and 5.90 ($W_{h/2}$ 8 Hz, C 2–H and C 3–H). Double irradiation at C 2–H, C 3–H or C 5–H led to sharpening of the signals due to the other two protons. O.r.d. (in ethanol) [Φ]₃₅₀ – 1954, [Φ]₃₃₅ – 2490, [Φ]₃₂₅ – 3352, [Φ]₃₁₅ – 4501, [Φ]₃₀₇ – 5364, [Φ]₃₀₀ – 4884, [Φ]₂₉₀ – 2298, [Φ]₂₈₁ 0, [Φ]₂₇₈ + 575, [Φ]₂₇₅ + 1053, [Φ]₂₆₉ + 1244, [Φ]₂₆₅ + 1149, [Φ]₂₆₀ + 575, [Φ]₂₅₆ 0 (Found: C, 84·3; H, 11·5; M⁺ 384·3403. C₂₇H₄₄O requires C, 84·4; H, 11·5%; M⁺ 384·3392).

Hydrogenation of A-nor-B-homo-5 β -cholest-2-en-6-one (30 mg) was effected by agitation in a hydrogen atmosphere of a solution of the compound in pentane containing palladium on carbon (20 mg; 5%) as catalyst. Isolation of the product in the usual manner and recrystallization from methanol gave A-nor-B-homo-5 β -cholestan-6-one (22 mg) as needles, m.p. 93–94°, ν_{max} 1709 cm⁻¹. P.m.r. δ 0.70 (C18–H₃), 0.82 and 0.90 (side chain methyls), 1.07 (C19–H₃), 3.02 ($J_{3,5}$ 8 Hz, $J_{3',5}$ 5 Hz, C5–H). O.r.d. (in ethanol) [Φ]₃₅₀ -1055, [Φ]₃₄₀ -1266, [Φ]₃₃₀ -1477, [Φ]₃₂₀ -2215, [Φ]₃₁₀ -3165, [Φ]₃₀₃ -3480, [Φ]₃₀₀ -3375, [Φ]₂₉₀ -1582, [Φ]₂₈₄ 0, [Φ]₂₈₀ +1371, [Φ]₂₇₀ +3271, [Φ]₂₆₀

³ Nussim, M., and Mazur, Y., Tetrahedron, 1968, 5337.

⁴ Paulson, D. R., Korngold, G., and Jones, G., Tetrahedron Lett., 1972, 1723.

+4325, $[\Phi]_{255}$ +4429, $[\Phi]_{250}$ +4320. Lit.³ m.p. 94–95°; v_{max} 1705 cm⁻¹; p.m.r. δ 0.69 and 1.07 (methyls); o.r.d. a - 63.

(B) 4β ,5-*Epoxy*-5 β -cholest-2-ene.—A solution of 4β ,5-epoxy-5 β -cholest-2-ene (140 mg) in acetone was photolysed as above for 12 h and gave a crude reaction product which on rapid chromatography afforded starting material (19 mg) and A-nor-B-homo-5 α -cholest-2-ene-6-one (c. 80% pure, 36 mg) as a relatively unstable *oil.* v_{max} 1709 cm⁻¹. P.m.r. δ 0.71 (C18–H₃), 0.82 (C19–H₃), 0.82 and 0.90 (side chain methyls), 3.88 ($W_{h/2}$ 6 Hz, C5–H), 5.80 (C2–H, C3–H) (Found: M⁺ 384. C₂₇H₄₄O requires M⁺ 384).

Hydrogenation of A-nor-B-homo-5α-cholest-2-en-6-one (30 mg) catalysed by palladium on carbon (5%) for 9 h as above gave A-nor-B-homo-5α-cholestan-6-one (c. 70% pure). v_{max} 1704 cm⁻¹. P.m.r. δ 0.67 (C 18–H₃ and C 19–H₃), 0.82 and 0.90 (side chain methyls), 2.97 ($W_{h/2}$ 15 Hz, C 5–H). O.r.d. [Φ]₃₅₀ +1930, [Φ]₃₄₀ +2122, [Φ]₃₃₀ +2894, [Φ]₃₂₀ +3860, [Φ]₃₁₁ +4631, [Φ]₃₀₅ +3860, [Φ]₂₉₅ +1736, [Φ]₂₈₈ 0, [Φ]₂₈₀ -1351, [Φ]₂₇₅ -1925, [Φ]₂₇₀ -1930, [Φ]₂₆₅ -1544, [Φ]₂₆₀ -1351 (Found: M + 386·3551. Calc. for C₂₇H₄₆O: M⁺ 386·3548). Lit.³ m.p. 86–88°; v_{max} 1702 cm⁻¹; p.m.r. δ 0.67 (methyls); o.r.d. a +136.

Equilibration of A-nor-B-homo-5 β -cholestan-6-one

A mixture of A-nor-B-homo-5 β -cholestan-6-one (50 mg) in dioxan (5 ml) and aqueous sulphuric acid (0·1 ml; 20%) was heated under reflux in a nitrogen atmosphere for 2 h. Isolation of the product in the usual manner gave a mixture (c. 4:1) of A-nor-B-homo-5 α - and -5 β -cholestan-6-ones. P.m.r. $\delta 0.67$ (C18–H₃ and C19–H₃; 5 α -ketone), 0.82 and 0.90 (side chain methyls), 1.07 (C19–H₃; 5 β -ketone). O.r.d. [Φ]₃₅₀ + 1425, [Φ]₃₄₀ + 1730, [Φ]₃₃₀ + 2341, [Φ]₃₂₀ + 3461, [Φ]₃₁₀ + 4174, [Φ]₃₀₀ + 2850, [Φ]₂₉₀ 0, [Φ]₂₈₅ - 1119, [Φ]₂₈₀ - 2087, [Φ]_{269.5} - 2810, [Φ]₂₆₅ - 2545, [Φ]₂₅₅ - 1934 (Found: M⁺ 386·3544. Calc. for C₂₇H₄₆O: M⁺ 386·3548). Lit.³ o.r.d. *a* +88.

Acknowledgment

The authors acknowledge grants from the Research Committee of the New Zealand Universities Grants Committee.

Manuscript received 17 December 1975