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Abstract 

For a three-electron bond between two equivalent atoms, Hiickel molecular orbital theory with 
overlap generates a resonance stabilization energy which is formally identical to that obtained 
from molecular orbital theory when electronic repulsions are included and the Mulliken 
approximation (ab a +S(aa+bb)) is invoked. The latter energy is the constructive interference 
energy. 

Huckel molecular orbital theory with atomic orbital overlap integrals (S) included 
has been used1 to predict that the three-electron bond* A * .  . B  between a pair of 
equivalent atoms generates destabilizing interactions when S > 113. Specifically, if 
A and B are equivalent atoms with (normalized) overlapping atomic orbitals a and 
b, then the bonding and antibonding molecular orbitals 

$+ = ( a + b ) / ( 2 + 2 ~ ) ~ ! ~  and $- = (a-b)/(2-2S)1!2 

have Hiickel molecular orbital energies 

E +  = (a+P)/(l + S )  and E -  = (a-P)/(l-S) 

for which u and /3 are the Coulomb and resonance integrals of Hiickel theory. The 
total Huckel electronic energy for the three-electron bond configuration ($+)2($-)1 

is then given by equation (I), which gives E > 3a when S > 113. The energy 3a is 
the energy for A: .B  or A .  :B when a and b do not overlap. For n (but not a) orbitals, 
zero overlap may be obtained by rotation of a relative to b around the AB bond 

* Here, we follow the usual practice to represent the three-electron bond as A.  . .B. However, the 
Green and Linnett2 representation A . B is more appropriate, because there is effectively only one 
bonding electron; the antisymmetrized product wavefunction / y,p+y- I, with the normalized 
molecular orbitals defined above, is equivalent2g3 to - 1 av,b 1 with one bonding and two non- 
bonding electrons. It may be noted here that if the odd electron of y-  can overlap with a singly 
occupied orbital located on a third atom Y, then these electrons may be spin-paired to generate4 
an 'increased-valence' structure Y-A . B, for which three electrons participate in bonding. (The 
latter electrons occupy the spin-orbitals y, v- and y + ,  or 7, y- and v+.) 
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axis. Of course, for each non-zero and finite internuclear separation, the variation 
theorem requires that A. . . B  must be stabilized by resonance relative to either 
A: . B  or A.  :B when the same internuclear separation and orbital overlap occur 
in each structure. Here, we shall demonstrate that Huckel theory with overlap 
generates an expression for the resonance stabilization energy which is formally 
identical to that obtained from molecular orbital theory when electronic repulsions 
are included and the Mulliken approximation5 for atomic orbital products is 
invoked. 

E(A...B) = 2&++&-  = ( ( ~ - s ) ~ + ( ~ - ~ s ) P ) / ( I - s ~ )  (1) 

The wavefunctions for A: . B  and A .  :B are cons t ruc ted~rom the atomic orbital 
configurations (a)'(b)l and (a)'(b)'. Because these structures are degenerate when 
A and B are equivalent atoms (and a and b are equivalent orbitals), we need only give 
consideration to one of them, (a)'(b)' for example. In order that the atomic orbital 
overlap be included in the Huckel energy for any internuclear separation, it is 
necessary to use the Slater determinantal wavefunction of equation (2) to evaluate 
the energy. (For this wavefunction, the presence or absence of a bar over the atomic 
orbital designates an s, spin quantum number of -4 or ++; N is the normalization 
constant 1/(6(1- s ~ ) ) ~ ~ ' . )  

The Huckel electronic energy of equation (3) for A:  .B  is calculated from 

where the ~ ( i )  terms are the one-electron effective Hamiltonian operators of Huckel 
theory. 

E(A : . B) = ((3 - S ')a - 2SP)/(1- S ') (3) 

The Huckel resonance stabilization energy for the three-electron bond is then 
given by equation (4), which is identical in form to that obtained from Hiickel theory 
for the ground state of Hz+,  namely 

This resonance stabilization energy corresponds to the constructive interference 
en erg^^,^ (E,), which gives the bulk of the binding energy for Hz+  when the a and 
p are evaluated as core Coulomb and resonance  integral^.^,^ For H z + ,  E, is 
negative's8 for all internuclear separations >0, and the same must be true for the 
three-electron bond (see also below). 

* We have used the same types of atomic orbitals for A and B in A: . B  and A.  :B in order that the 
molecular orbital and valence-bond descriptions for the three-electron bond are equivalent. 
Valence-bond calculations for Hez+ that relax this requirement have been reported by a number 
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Huckel theory does not explicitly treat the electron-electron interactions. If 
these are included in the three-electron Hamiltonian operator, then both the 
molecular orbital and valence-bond wavefunctions (namely j $ + $+ $ - 1 and 
(1 aab I + I a5b ))/(2 t 2 ~ ) ' ~ ' )  generate the electronic energy of equation (5) for the 
three-electron bond. In equation (5), the a" and PC are core Coulomb and resonance 
integrals, and 

(aa I bb) = (a(l)b(2) I llr12 I a(l)b(2)) 

etc. The electronic energy for either A: .B or A .  :B, and the resonance energy 
for a given internuclear separation are then given by equations (6) and (7). If we 
introduce the Mulliken approximation5 for the ab orbital product (ab x &S(aa+ bb)) 
into each of (aa I ab) and (ab I ba) in equation (7), then E(resonance) reduces to 

EI = (Po - SuO)/(l + S )  

which is formally identical to equation (4) for the Huckel theory. 

(aa I aa) + (2 + S)(aa I bb) + 2(1- S)(aa I ab) - (1 + 3S)(ab I ba) + 
(1 +S)( l  -S2 )  (5) 

(3 - S ')ac - 2SP0 (aa I aa) + 2(aa I bb) - 2 s  (aa I ab) - (ab I ba) 
E(A: .B) = 

1 -S2 
+ 

1 -S2 (6) 

E(resonance) - E (A. .B) - E (A : . B) 

- -- p0 - Ssl" 2(1+ S ')(aa I ab) - S {(aa I aa) + (aa I bb) + 2(ab I ba)) 
l + S  

+ 
(1 +S)(1 -S2)  (7) 

For each of the ground-state molecular orbital configurations of H, +, H,, He, + 

and He,, the Huckel resonance stabilization energy* may be expressed as 
n(P-Sa)/(l+S), with n defined as half the difference between the number 
of bonding electrons and the number of antibonding electrons. The Huckel 
electronic and resonance energies for the Heitler-London wavefunction of Hz 
are equal to 2(x + SP)/(l+ S ') and 2S (P - Sx)/(l+ S '). Huckel theory predicts 
that the Heitler-London function (1 a6 1 + 1 bii 1)/(2 + 2S ')11' should be degenerate 
with the ionic wavefunction (1 aii I + I b6 1)/(2 + 2 s  2)112 ; this result of course does 
not pertain when electron-electron interactions are taken account of. 
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* Each of the Slater determinants / a61 and I ba 1 for Hz  has a Hiickel energy of 2 ~ l  when overlap is 
included. For He,, the molecular orbital and atomic orbital configurations 1 v+v+v-ij7- I and 
1 aab61 are equivalent, and therefore no resonance stabilization is possible. 




