Relationship Between Dipole Moments and Inductive Substituent Constants

Bo-Long Poh

School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia.

Abstract

A linear relationship between μ/d (where μ is the C-X bond dipole moment and d is a distance parameter) and the inductive substituent constant, σ_1 , for substituted acetic acids, XCH₂COOH, is derived from a combination of Taft and Kirkwood-Westheimer equations. This linear relationship is similar to the empirical relationship relating μ/d and σ_1 observed in monosubstituted alkanes.

Several empirical correlations of dipole moments of organic molecules with substituent constants have been given by various workers. Some used μ , some used μ , and some μ , and some μ in the correlations (μ refers to the dipole moment of the molecule and μ is a distance parameter. It was found that good correlations of μ with the inductive substituent constant, μ , were obtained in monosubstituted alkanes though this approach was criticized as being physically meaningless. The purpose of this short paper is to show that a similar linear relationship between μ and μ in substituted acetic acids, XCH₂COOH, can be derived from a combination of Taft and Kirkwood–Westheimer equations.

From a simple combination of Taft⁸ and Kirkwood-Westheimer⁹ equations relating the ionization constants of substituted acetic acids, XCH₂COOH, in water at 25°C we obtain

$$\mu/R^2 = 2 \cdot 3k_B T D_e \sigma^* \rho^* / e \cos \theta \tag{1}$$

where $k_{\rm B}$ is the Boltzmann constant, T is the absolute temperature, $D_{\rm e}$ is the effective dielectric constant, e is the electronic charge, R is the distance between the ionizing proton and the centre of the dipole, θ is the angle between the dipole axis and the line joining the ionizing proton to the centre of the dipole, σ^* is the substituent constant,

¹ Taft, R. W., Jr. J. Am. Chem. Soc., 1953, 75, 4231.

² Petkovic, D. M., Kezele, B. A., and Rajic, D. R., J. Phys. Chem., 1973, 77, 922.

³ Rao, C. N. R., Wahl, W. H., and Williams, E. J., Can. J. Chem., 1957, 35, 1575.

⁴ Charton, M., J. Org. Chem., 1965, 30, 552.

⁵ Exner, O., Collect. Czech. Chem. Commun., 1960, 25, 642.

⁶ Deady, L. W., Kendall, M., Topsom, R. D., Jones, R. A. Y., J. Chem. Soc., Perkin Trans. 2, 1973, 416.

⁷ Exner, O., 'Dipole Moments in Organic Chemistry' Ch. 3 (Georg Thieme: Stuttgart 1975).

⁸ Taft, R. W., Jr, and Lewis, I. C., J. Am. Chem. Soc., 1959, 81, 5343.

⁹ Kirkwood, J. G., and Westheimer, F. H., J. Chem. Phys., 1938, 6, 506, 513.

 ρ^* is the rho parameter, and μ is the C-X bond dipole moment. Inserting numerical values into equation (1) for k_B , e, T (298 K), ρ^* (1·72), $D_e/\cos\theta$ (6·62, Table 1) and replacing σ^* by $2\cdot 22\sigma_I$ and R^2 by $6\cdot 46d$ (Table 2) transform equation (1) into the approximate equation (2)

$$\mu/d = 3 \cdot 22\sigma_1 \tag{2}$$

which predicts a linear relationship between μ/d and σ_I with a slope of 3·22. The C-X bond dipole moments of XCH₂COOH are close to the dipole moments of

Table 1. Values of $\cos \theta$, R, and D_e for some XCH₂COOH compounds in water

X	$\cos heta^{ ext{A}}$	R (Å) ^A	$D_{\mathrm{e}}{}^{\mathrm{B,C}}$	$D_{ m e}/{\cos heta}$	X	$\cos heta^{\scriptscriptstyle{ extsf{A}}}$	R (Å) ^A	$D_{\rm e}^{ { m B, C}}$	$D_{ m e}/{\cos heta}$
CN	0.737	4 · 20	4.622	6.27	Br	0.566	3 · 44	3 · 748	6.62
NO_2	0.573	3.46	3.761	6.56	Cl	0.584	3 · 39	3.681	6.72
I	0.586	3 · 50	3 · 805	6.49	F	0.506	3 · 29	3.584	$7 \cdot 08$
			a	verage $D_{ m e}/{ m c}$	$\cos\theta \ 6.62$	±0.27			

^A Values of $\cos \theta$ and R calculated from the geometry of the molecule with the carboxyl proton at 1.45 Å beyond the carboxyl carbon atom (ref.⁹).

Table 2. A comparison of R^2 and d

X	d (Å) ^A	$R^2/d(\text{\AA})$	X	d (Å) ^A	$R^2/d(\text{\AA})$
CN	2.62	6.73	Br	1 · 94	6.10
NO ₂	2.02	5.93	Cl	1 · 78	6.46
I	2.14	5.72	F	1 · 38	$7 \cdot 84$
		average R^2/a	$d \cdot 6 \cdot 46 \pm 0$	77	

^A Data taken from ref.⁶, which also gives the definition of d.

alkanes containing the corresponding substituents X and we find that the predicted value of 3.22 in equation (2) is also in close agreement with the reported values⁶ of 2.74 (CH₃X), 2.77 (Bu^tX), 2.94 (cyclohexyl-X), 2.61 (cyclopentyl-X), and 3.03 (1-adamantyl-X) obtained from plots of μ/d against σ_1 in monosubstituted alkanes.

Acknowledgment

The author thanks Universiti Sains Malaysia for a short-term research project grant.

Manuscript received 2 March 1978

^B Values of D_e calculated according to Tanford, C., J. Am. Chem. Soc., 1957, 79, 5348.

^c Data of D_e from Edward, J. T., Farrell, P. G., and Job, J. L., J. Chem. Phys., 1972, 57, 5251.

¹⁰ Ritchie, C. D., and Sager, W. F., Prog. Phys. Org. Chem., 1964, 2, 323.