The Configuration of the $\mathbf{C r}(\mathbf{o x})(\text { trien })^{+}$Cation

Donald A. House
Department of Chemistry, University of Canterbury Christchurch, New Zealand.

Abstract

On the basis of the inversion reaction

$$
\Lambda-(+)_{589}-\mathrm{Cr}(\mathrm{ox})(\text { trien })^{+}+\mathrm{HCl} \rightarrow \Delta-(-)_{589}-\text { cis- } \alpha-\mathrm{CrCl}_{2}(\text { trien })^{+}
$$

the oxalato complex is now believed to have the cis- β configuration, rather than the previously suggested cis- α.

Introduction

Salts of the $\mathrm{Cr}(\mathrm{ox})(\text { trien })^{+}$cation (which necessarily has the cis configuration) were first described in $1966,{ }^{1}$ and since that time this complex has been used in various kinetic ${ }^{2}$ and synthetic studies. ${ }^{3}$ The complex was originally assigned the cis- α configuration ${ }^{1}$ on the basis of its infrared spectrum and the ready interconversion to the cis $-\alpha-\mathrm{CrCl}_{2}$ (trien) ${ }^{+}$cation: ${ }^{1,3}$

$$
\begin{equation*}
\mathrm{Cr}(\mathrm{ox})(\text { trien })^{+} \stackrel{\mathrm{SOCl}_{2} / \mathrm{H}_{2} \mathrm{O} \text { or } 12 \mathrm{~m} \mathrm{HCl}}{\rightleftharpoons} \underset{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ox}}{\rightleftharpoons} \text { cis }-\alpha-\mathrm{CrCl}_{2}(\text { trien })^{+} \tag{1}
\end{equation*}
$$

However, Fordyce et al. ${ }^{3}$ observed that under anhydrous conditions the forward reaction yielded cis- $\beta-\mathrm{CrCl}_{2}(\text { (trien })^{+}$which rapidly isomerized to the cis- α dichloro complex in the presence of low concentrations of water.

As part of a continuing study of optically active chromium(III) amine complexes ${ }^{4-6}$ we have prepared optically active $\mathrm{Cr}(\mathrm{ox})(\text { (trien })^{+}$and we now report the chiroptical changes that occur during the forward reaction (1).

Experimental

Triethylenetetraamine (Fluka) and (+)-dibenzoyltartaric acid monohydrate (Aldrich) were used as supplied. $[\mathrm{Cr}(\mathrm{ox})($ trien $)] \mathrm{Br}, \mathrm{H}_{2} \mathrm{O}$ was prepared as described previously. ${ }^{1}$

Resolution of the $\mathrm{Cr}(\mathrm{ox})(\text { (trien })^{+}$Cation

$\mathrm{Cr}(\mathrm{ox})(\text { trien })^{+}$decomposes in acidic media through $\mathrm{Cr}-\mathrm{N}$ bond rupture with a half-life of about 50 min at $298 \mathrm{~K},{ }^{2}$ so all operations during the resolution procedure should be performed expeditiously.

[^0]The bromide salt (2 g) was ground in a large mortar with 50 ml of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium formate/formic acid buffer ($\mathrm{pH} 3 \cdot 7$) and $25 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ until all the solid dissolved (c. 5 min). $(+)$-Dibenzoyltartaric acid ($\mathrm{H}_{2} \mathrm{dbt}$) monohydrate (2 g) was suspended in 50 ml of warm (313 K) water and LiOH (c. 0.75 g) was added in small portions until all the solid had dissolved. The final pH was adjusted to below 8 (indicator paper) with formic acid. The still warm solution of the resolving agent was added to the room-temperature solution of the oxalato bromide and the less soluble diastereoisomeride (2 g) immediately precipitated. After 2-min stirring, the precipitate was removed from the mother liquor by filtration, and $\mathrm{NaClO}_{4}, \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~g})$ was added to the mother liquor to precipitate (during 10 min , ice cooling) the optically impure perchlorate salt (1 g) of the more soluble diastereoisomeride. Both precipitates were washed with propan-2-ol and then ether, and air-dried.

Spectral parameters.- $(\pm)-\mathrm{Cr}(\mathrm{ox})(\text { trien })^{+}:^{2} \lambda_{\max } 495 \mathrm{~nm}\left(\varepsilon 147 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right), \lambda_{\min } 420$ (33•7), $\lambda_{\max } 370(104) . \Delta-(-)_{589}-[\mathrm{Cr}(\mathrm{ox})$ (trien) $][\mathrm{Hdbt}]$, c.d. $(10 \%$ dimethylformamide, 90% water): $[\Delta \varepsilon]_{482}-1.92 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1},[\Delta \varepsilon]_{395} 0,[\Delta \varepsilon]_{358}+0.23 . \quad \Lambda-(+)_{589}[\mathrm{Cr}(\mathrm{ox})($ trien $)] \mathrm{ClO}_{4}$, c.d. $\left(\mathrm{H}_{2} \mathrm{O}\right):[\Delta \varepsilon]_{482}+0.92,[\Delta \varepsilon]_{395} 0,[\Delta \varepsilon]_{358}-0.11 ; 48 \%$ optically pure based on the $(-)_{589}$ data. $\Lambda-(+)_{589}-[\mathrm{Cr}(\mathrm{ox})($ trien $)] \mathrm{ClO}_{4}, \quad$ o.r.d. $\quad\left(\mathrm{H}_{2} \mathrm{O}\right): \quad[M]_{589}+270^{\circ} \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~m}^{-1}, \quad[M]_{525}+562$, $[M]_{495} 0,[M]_{450}-1240$, giving $[M]_{589}-560$ for the $\Delta-(-)_{589}$ enantiomer.

Fig. 1. --- C.d. spectrum of Λ - $(+)_{589}-c i s-\beta$ [Cr (ox)(trien) ClO_{4} in $\mathrm{H}_{2} \mathrm{O}$.

- C.d. spectral changes of the same complex, after $0,7,16,31$ and 131 min in $12 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ at room temperature, to give $\Delta-(-)_{589}$ -cis- $\alpha-\mathrm{CrCl}_{2}(\text { trien })^{+}$.

$\Lambda-(+)_{589}-\mathrm{cis}-\alpha$-Dichloro(triethylenetetraamine) chromium(III) Chloride

$\Delta-(-)_{589}-[\mathrm{Cr}(\mathrm{ox})($ trien $)][\mathrm{Hdbt}](1 \mathrm{~g})$ was moistened with SOCl_{2} and a few drops of water were added. The orange slurry rapidly turned to a purple oil. The excess of SOCl_{2} was allowed to evaporate at room temperature $(1-2 \mathrm{~h})$ and the oil triturated with methanol. The resulting blue powder was collected by filtration, washed with methanol, and air-dried. The infrared spectrum of the product agreed with the published data for cis- $\alpha-\left[\mathrm{CrCl}_{2}(\right.$ trien $\left.)\right] \mathrm{Cl}^{1,3}$

Spectral parameters.-(\pm)-cis- $\alpha-\mathrm{CrCl}_{2}(\text { trien })^{+}\left(0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\right):^{1,3,7} \lambda_{\text {max }} 534 \quad$ (95.5), $\lambda_{\min } 455(28 \cdot 5), \lambda_{\max } 396(86 \cdot 7) . \Lambda-(+)_{589}-\mathrm{cis}-\alpha-\mathrm{CrCl}_{2}(\text { trien })^{+}$, c.d. $\left(0 \cdot 1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\right):[\Delta \varepsilon]_{600}$
 $\Lambda-(+)_{589}-c i s-\alpha-\mathrm{CrCl}_{2}$ (trien) ${ }^{+}$, o.r.d. $\left(0 \cdot 1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\right):[M]_{650}-400,[M]_{619} 0,[M]_{589}+1300$, $[M]_{555}+2660,[M]_{505} 0,[M]_{470}-1230,[M]_{440}-943,[M]_{405}-1480,[M]_{370} 0,[M]_{355}+257$, $[M]_{325} 0$.

[^1]
Instrumentation

All spectra were measured on a JASCO ORD/CD-5 recording spectropolarimeter.

Results and Discussion

The $(\pm)-\operatorname{Cr}(\mathrm{ox})(\text { trien })^{+}$cation has been resolved by use of the monohydrogen (+)-dibenzoyltartrate anion. ${ }^{8}$ The $(-)_{589}-\mathrm{Cr}(\mathrm{ox})(\text { trien })^{+}$cation isolated as the less soluble diastereoisomeride has a large negative c.d. at 482 nm , and is assigned the Δ absolute configuration on the basis of a comparison with the c.d. spectra of analogous $\mathrm{Co}^{\text {III }}$. complexes. ${ }^{8}$ We note that all the less soluble diastereoisomerides of $\mathrm{M}(\mathrm{ox})\left(\mathrm{N}_{4}\right)^{+}$cations $\left(\mathrm{M}=\mathrm{Co},{ }^{8} \mathrm{Cr}^{9}\right)$ so far isolated with this optically active anion have been assigned to the Δ configuration: $\mathrm{N}_{4}=(\mathrm{en})_{2},((R S)-\mathrm{pn})_{2},(\mathrm{tn})_{2}$, (trien), (2,3,2-tet), (3,2,3-tet).

Although the absolute configuration can be readily assigned, it is not possible to distinguish between the cis $-\alpha$ and cis- β trien configurations on the basis of the c.d. spectral parameters. ${ }^{8,10}$ Reaction of $\Lambda-(+)_{589}-\mathrm{Cr}(\mathrm{ox})(\text { trien })^{+}$with concentrated HCl results in the formation of $\Delta-(-)_{589}-\mathrm{cis}-\alpha-\mathrm{CrCl}_{2}$ (trien) ${ }^{+}$(Fig. 1). The absolute configuration of this latter cation was established by comparison of the c.d. spectrum with that reported for the analogous Co^{111} complex. ${ }^{10}$ Inversions of this type are rare in coordination chemistry ${ }^{11}$ and the present example is significant in that it is one of the few reported examples to take place in acidic solution. ${ }^{3}$ It is not possible for a $\Lambda-c i s-\alpha \rightleftharpoons \Delta-c i s-\alpha$ change to occur without proton inversion, but a Λ-cis- $\beta \rightleftharpoons$ Δ-cis- α change can be readily envisaged (Scheme 1). As proton inversions in acidic solution are unlikely, we suggest that the starting $\mathrm{Cr}(\mathrm{ox})(\text { trien })^{+}$cation has the cis $-\beta$ configuration, as the cis- α configuration for the resulting dichloro product is now well established. ${ }^{1,3,12}$

Acknowledgments

I thank the New Zealand Universities Grants Committee for providing funds to purchase instruments used in this research, and the referee for his/her stimulating comments.

[^2]
[^0]: ${ }^{1}$ House, D. A., and Garner, C. S., J. Am. Chem. Soc., 1966, 88, 2156.
 ${ }^{2}$ Veigel, J. M., Inorg. Chem., 1968, 7, 69.
 ${ }^{3}$ Fordyce, W. A., Sheridan, P. S., Zinato, E., Riccieri, P., and Adamson, A. W., Inorg. Chem., 1977, 16, 1154.
 ${ }^{4}$ House, D. A., J. Inorg. Nucl. Chem., 1973, 35, 3103.
 ${ }^{5}$ Kindred, I. J., and House, D. A., J. Inorg. Nucl. Chem., 1975, 37, 1359.
 ${ }^{6}$ Kindred, I. J., and House, D. A., J. Inorg. Nucl. Chem., 1975, 37, 1320.

[^1]: ${ }^{7}$ Hsu, C. Y., and Garner, C. S., Inorg. Chim, Acta, 1967, 1, 17.

[^2]: ${ }^{8}$ Brubaker, G. R., and Schaefer, D. P., Inorg. Chem., 1971, 10, 968.
 ${ }^{9}$ Yang, D., and House, D. A., Inorg. Chim. Acta, in press.
 ${ }^{10}$ Sargeson, A. M., and Searle, G. H., Inorg. Chem., 1965, 4, 45.
 ${ }^{11}$ Basolo, F., and Pearson, R. G., 'Mechanisms of Inorganic Reactions' 2nd Edn, p. 265 (John Wiley: New York 1967).
 ${ }^{12}$ Buckingham, D. A., and Jones, D., Inorg. Chem., 1965, 4, 1387.

