A Further Extension of the Linear Relationship Between Molecular Rotation and Bond Refraction in Open-Chain Monosubstituted Alkanes \dagger

Bo-Long Poh
School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia.

Abstract

It has been shown that, in the correlations of molecular rotations with bond refractions for open-chain monosubstituted alkanes, $\mathrm{H}\left(\mathrm{CH}_{2}\right)_{b}\left(\mathrm{CH}_{3}\right) \mathrm{C}^{*} \mathrm{H}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}(b>1, n \geqslant 0)$, the compounds with different n and X for a given b can now be grouped into a single series.

Configuration determination of compounds is an important aspect of chemical research. Since optically active compounds have a common physical property, namely molecular rotation, that is easily measurable with a simple and inexpensive instrument, an ideal method for the determination of their configurations is one that can relate directly their molecular rotations to their configurations. We have shown the usefulness of the simple empirical equation ${ }^{1}$

$$
[M]_{\mathrm{D}}=m \Sigma R_{\mathrm{D}}+I
$$

in correlating the molecular rotations with bond refractions of structurally related series of monosubstituted alkanes ${ }^{2}$ and carbohydrates ${ }^{3}$ ($[M]_{D}$ is the molecular rotation, ΣR_{D} is the sum of bond refractions, and m and I are constants for a given series of compounds; the subscript ${ }_{\mathrm{D}}$ denotes the sodium D line).

(1) $b>1, n \geqslant 0$

In our earlier correlations ${ }^{2}$ of open-chain monosubstituted alkanes (1) we were not able to combine the compounds with different n and X for a given b into one single series. For each given b there were n separate series to be correlated.

[^0]Table 1. Molecular rotations of monosubstituted alkanes (1)

	n	Substituent and $[M]_{\mathrm{D}}$ (neat, $22 \pm 3^{\circ} \mathrm{C}$)	b	n	Substituent and [$M]_{\mathrm{D}}$ (neat, $22 \pm 3^{\circ} \mathrm{C}$)
2	0	OH $10 \cdot 3,{ }^{\mathrm{A}} \mathrm{NH}_{2} 5 \cdot 4,{ }^{\mathrm{B}} \mathrm{CO}_{2} \mathrm{H} 18 \cdot 0,{ }^{\mathrm{A}} \mathrm{CO}_{2} \mathrm{Me} 27 \cdot 8,{ }^{\mathrm{B}} \mathrm{CO}_{2} \mathrm{Et} 22 \cdot 9,{ }^{\mathrm{C}}$ $\mathrm{Ph} 36 \cdot 6,{ }^{\mathrm{C}} \mathrm{NO}_{2} 15 \cdot 6,{ }^{\mathrm{B}} \mathrm{CN} 32 \cdot 5,{ }^{\mathrm{B}} \mathrm{Cl} 35 \cdot 3,{ }^{\mathrm{B}} \mathrm{Br} 48 \cdot 4,{ }^{\mathrm{B}}$ I $61 \cdot 6,{ }^{\mathrm{B}}$ $\mathrm{HgBr} 87 \cdot 1,{ }^{\mathrm{B}, \mathrm{D}} \mathrm{HgCl} 76 \cdot 2$, ${ }^{\mathrm{B}, \mathrm{D}} \mathrm{CHO} 20 \cdot 3$, ${ }^{\text {A,E }} \mathrm{CONH}_{2}$ 19, ${ }^{\text {F,G }} \mathrm{OAc}^{2} 0^{\mathrm{H}}$	4 4	2	$\mathrm{OH}-7 \cdot 9,{ }^{\wedge} \mathrm{CO}_{2} \mathrm{H}-6 \cdot 1,{ }^{\wedge} \mathrm{CO}_{2} \mathrm{Et}-2 \cdot 9,{ }^{\mathrm{C}} \mathrm{CN}-6 \cdot 0,{ }^{\mathrm{F}} \mathrm{NH}_{2}-16,{ }^{\wedge}$ $\mathrm{COCl} 3.5^{\mathrm{F}}$ $\mathrm{Br} 16 \cdot 8,{ }^{\wedge} \mathrm{CO}_{2} \mathrm{H} 4 \cdot 1,{ }^{\mathrm{A}} \mathrm{NH}_{2}-1 \cdot 7,{ }^{\mathrm{A}} \mathrm{OH}-4 \cdot 0,{ }^{\wedge} \mathrm{CO}_{2} \mathrm{Et} 2 \cdot 3,{ }^{\mathrm{C}}$
2	1	$\begin{aligned} & \mathrm{NH}_{2}-5 \cdot 1,{ }^{\mathrm{I}} \mathrm{OH}-5 \cdot 2,{ }^{\mathrm{C}} \mathrm{CO}_{2} \mathrm{H} 10 \cdot 4,{ }^{\mathrm{A}} \mathrm{CO} \mathrm{CO}_{2} \mathrm{Et} 11 \cdot 4,{ }^{\mathrm{C}} \mathrm{~F}-8 \cdot 0,{ }^{\mathrm{C}} \\ & \mathrm{Ph} 9 \cdot 2,{ }^{\mathrm{C}} \mathrm{Br} 7 \cdot 9,{ }^{\mathrm{A}} \mathrm{COCl} 18,{ }^{\mathrm{F}} \mathrm{I} \quad 11,{ }^{\mathrm{B}} \mathrm{Cl} 1 \cdot 8^{\mathrm{B}} \end{aligned}$	4	3	$\begin{gathered} \mathrm{H}-11 \cdot 4,{ }^{\mathrm{A}} \mathrm{CN}-1 \cdot 6{ }^{\mathrm{F}} \\ \mathrm{COCl} 3 \cdot 5,{ }^{\mathrm{F}} \mathrm{Br} 8 \cdot 3,{ }^{\mathrm{A}} \mathrm{CO}_{2} \mathrm{H} 1 \cdot 7,{ }^{\mathrm{A}} \mathrm{H}-1 \cdot 7,{ }^{\mathrm{A}} \mathrm{OH}-0 \cdot 7,{ }^{\mathrm{A}} \mathrm{NH}_{2}-0 \cdot 8,{ }^{\mathrm{A}} \end{gathered}$
2	2	$\mathrm{Br} 38 \cdot 8,{ }^{\mathrm{A}} \mathrm{CO}_{2} \mathrm{H} 13 \cdot 6,{ }^{\mathrm{A}} \mathrm{NH}_{2} 10 \cdot 6,{ }^{\mathrm{C}} \mathrm{OH} 9 \cdot 1,{ }^{\mathrm{A}} \mathrm{CO}_{2} \mathrm{Et} 12 \cdot 7,{ }^{\mathrm{C}}$ CHO $12 \cdot 0,{ }^{\text {A, }}{ }^{\mathrm{E}} \mathrm{Ph} 35 \cdot 1,{ }^{\mathrm{K}} \mathrm{COCl} 19,{ }^{\mathrm{F}} \mathrm{CONH}_{2} 19,{ }^{\mathrm{F}, \mathrm{G}} \mathrm{CN} 17,{ }^{\mathrm{F}} \mathrm{I} 44^{\mathrm{A}}$	4	4	$\mathrm{CO}_{2} \mathrm{Et} 2 \cdot 8,{ }^{\mathrm{C}} \mathrm{CONH}_{2} 1 \cdot 6,{ }^{\mathrm{F}, \mathrm{G}} \mathrm{CN} 5 \cdot 3^{\mathrm{F}}$ Br $5 \cdot 3,{ }^{A} \mathrm{OH} 0,{ }^{\mathrm{A}} \mathrm{NH}_{2} 0 \cdot 5,{ }^{\mathrm{A}} \mathrm{CN} 2 \cdot 0^{\mathrm{F}}$
2	3	Br $21 \cdot 9,{ }^{\mathrm{A}} \mathrm{CO}_{2} \mathrm{H} 11 \cdot 1,{ }^{\mathrm{A}} \mathrm{OH} 11 \cdot 9,{ }^{\mathrm{L}} \mathrm{CO}_{2} \mathrm{Et} 13 \cdot 0,{ }^{\mathrm{C}} \mathrm{CHO} 12 \cdot 8,{ }^{\mathrm{A}, \mathrm{E}}$ H 9.9, ${ }^{\mathrm{L}} \mathrm{CN} 17,{ }^{\mathrm{F}} \mathrm{NH}_{2} 12,{ }^{1}$ I 26^{J}	4	5	$\begin{aligned} & \mathrm{H} \mathrm{O} \cdot 8,{ }^{\mathrm{A}} \mathrm{NH}_{2} 2 \cdot 4^{\mathrm{A}} \\ & \mathrm{COCl} 21,{ }^{\mathrm{N}} \mathrm{CN} 43,{ }^{\mathrm{N}} \mathrm{CO}_{2} \mathrm{H} 26,{ }^{\mathrm{N}} \mathrm{OH} 12 \cdot 5,{ }^{\mathrm{C}} \mathrm{CO}_{2} \mathrm{Et} 32 \cdot 6,{ }^{\mathrm{N}} \end{aligned}$
	4	H $11 \cdot 4,{ }^{\text {c }} \mathrm{Br} 14 \cdot 9,{ }^{\text {a }}$ OH 12.0, ${ }^{\text {L }} \mathrm{NH}_{2} 16,{ }^{1} \mathrm{CO}_{2} \mathrm{Et} 13 \cdot 7,{ }^{\mathrm{L}} \mathrm{CO}_{2} \mathrm{H} 12 \cdot 2{ }^{\text {A }}$			$190 \cdot 4,{ }^{\text {c }} \mathrm{Br} 50 \cdot 0,{ }^{\text {c }}$ OAc $13^{\mathbf{H}}$
	5	H $12 \cdot 5,{ }^{\text {C }} \mathrm{OH} 12 \cdot 5,{ }^{\text {L }} \mathrm{Br} 14 \cdot 0^{\text {A }}$	5	1	$\mathrm{CO}_{2} \mathrm{H}-8 \cdot 1,{ }^{\mathrm{c}} \mathrm{OH}-11 \cdot 1,{ }^{\mathrm{N}} \mathrm{I} 5 \cdot 4,{ }^{\mathrm{N}} \mathrm{CO}_{2} \mathrm{Et}-4 \cdot 2,{ }^{\mathrm{C}} \mathrm{NH}_{2}-14 \cdot 5^{\mathrm{N}}$
	6	H $12.5{ }^{\text {A }}$	5	2	$\mathrm{Br} 14 \cdot 7,{ }^{\text {A }} \mathrm{CO}_{2} \mathrm{H} 1 \cdot 9,{ }^{\mathrm{c}} \mathrm{NH}_{2}-3 \cdot 6,{ }^{\mathrm{C}} \mathrm{H}-12 \cdot 0,{ }^{\text {L }} \mathrm{OH}-6 \cdot 1,{ }^{\text {c }}$
3	0	OH $12 \cdot 1,{ }^{\mathrm{A}} \mathrm{CO}_{2} \mathrm{H} 21 \cdot 4,{ }^{\wedge} \mathrm{CO}_{2} \mathrm{Et} 27 \cdot 5,{ }^{\mathrm{C}} \mathrm{Ph} 38,{ }^{\mathrm{C}} \mathrm{CN} 49,{ }^{\mathrm{F}} \mathrm{Cl} 46 \cdot 5,{ }^{\mathrm{B}}$ $\mathrm{Br} 63,{ }^{\mathrm{B}} \mathrm{I} 92,{ }^{\mathrm{B}} \mathrm{COCl} 14 \cdot 4,{ }^{\mathrm{F}} \mathrm{CONH}_{2} 24,{ }^{\mathrm{F}, \mathrm{G}} \mathrm{NH}_{2} 5{ }^{5}{ }^{\mathrm{M}} \mathrm{OAc} 22^{\mathrm{H}}$	5	3	$\begin{aligned} & \mathrm{CO}_{2} \mathrm{Et} 0 \cdot 5^{\mathrm{C}} \\ & \mathrm{Br} 6 \cdot 2,{ }^{\mathrm{A}} \mathrm{CO}_{2} \mathrm{H} 0 \cdot 8,{ }^{\mathrm{c}} \mathrm{OH}-2 \cdot 6,{ }^{\mathrm{c}} \mathrm{H}-2 \cdot 4,{ }^{\mathrm{C}} \mathrm{CO}_{2} \mathrm{Et} 1 \cdot 7^{\mathrm{c}} \end{aligned}$
3	1	$\mathrm{CO}_{2} \mathrm{H}-3 \cdot 6,{ }^{\mathrm{A}} \mathrm{OH}-6 \cdot 8,{ }^{\mathrm{c}} \mathrm{CO}_{2} \mathrm{Et}-0 \cdot 7,{ }^{\mathrm{c}} \mathrm{NH}_{2}-14,{ }^{\text {r }} \mathrm{COCl} 4 \cdot 6{ }^{\text {F }}$	5	4	$\mathrm{Br} 4 \cdot 0,{ }^{\text {A }} \mathrm{OH}-1.9,{ }^{\text {c }} \mathrm{H}-0.8{ }^{\text {c }}$
3	2	$\begin{aligned} & \mathrm{Br} 21 \cdot 0,{ }^{\wedge} \mathrm{CO}_{2} \mathrm{H} 6 \cdot 9,{ }^{\wedge} \mathrm{NH}_{2}-0 \cdot 4,{ }^{\mathrm{c}} \mathrm{OH}-2 \cdot 1,{ }^{\mathrm{c}} \mathrm{CO}_{2} \mathrm{Et} 5 \cdot 5,{ }^{\mathrm{c}} \\ & \mathrm{H}-9 \cdot 9,{ }^{\mathrm{C}} \mathrm{COCl} 6 \cdot 8,{ }^{\mathrm{F}} \mathrm{CN} 2 \cdot 0^{\mathrm{F}} \end{aligned}$	6	0	$\begin{aligned} & \mathrm{OH} 13,{ }^{\mathrm{B}} \mathrm{NH}_{2} 7,{ }^{\mathrm{I}} \mathrm{NO}_{2} 30 \cdot 4,{ }^{\mathrm{B}} \mathrm{~F} 16 \cdot 4,{ }^{\mathrm{O}} \mathrm{Cl} 54,{ }^{\mathrm{B}} \mathrm{Br} 81 \cdot 1,{ }^{\mathrm{B}} \mathrm{I} 115,{ }^{\mathrm{B}} \\ & \mathrm{CO}_{2} \mathrm{H} 27^{\mathrm{P}} \end{aligned}$
3	3	$\mathrm{Br} 14 \cdot 5,{ }^{\mathrm{A}} \mathrm{CO}_{2} \mathrm{H} 3 \cdot 7,{ }^{\mathrm{A}} \mathrm{OH} 0,{ }^{\mathrm{C}} \mathrm{NH}_{2}-0 \cdot 7,{ }^{1} \mathrm{CO}_{2} \mathrm{Et} 5 \cdot 9{ }^{\mathrm{C}}$	6	1	$\mathrm{CO}_{2} \mathrm{H} 26,{ }^{\text {A }} \mathrm{H}-12 \cdot 5^{\text {A }}$
	4	Br 7.8, ${ }^{\text {A OH }} 1 \cdot 7,{ }^{\text {c }}$ H 1.7 ${ }^{\text {c }}$	7	0	$\mathrm{CN} \mathrm{40},{ }^{\circ} \mathrm{CO}_{2} \mathrm{H} 27,{ }^{\circ} \mathrm{OH} \mathrm{13},{ }^{\circ} \mathrm{CO}_{2} \mathrm{Et} 36 \cdot 5^{\text {L }}$
3	5	H $2 \cdot 4{ }^{\text {c }}$	7	1	OH-11.2, ${ }^{\mathbf{L}} \mathrm{I} 2 \cdot 5,{ }^{\mathbf{3}} \mathrm{CO}_{2} \mathrm{H}-8 \cdot 1^{\text {A }}$
4	0	OH $12 \cdot 2,{ }^{\text {c }} \mathrm{NH}_{2} 7 \cdot 8,{ }^{1} \mathrm{CO}_{2} \mathrm{H} 24 \cdot 3,{ }^{\wedge} \mathrm{CO}_{2} \mathrm{Et} 30 \cdot 7,{ }^{\mathrm{c}} \mathrm{Ph} 39,{ }^{\mathrm{C}} \mathrm{CN} 51,{ }^{\text {F }}$	7	2	$\mathrm{CO}_{2} \mathrm{H} 1 \cdot 9^{\text {A }}$
		I $81,{ }^{\text {c }} \mathrm{COCl} 12,{ }^{\mathrm{N}} \mathrm{CONH}_{2} 18,{ }^{\text {F,G }} \mathrm{OAc} 17^{\mathrm{H}}$	7	3	$\mathrm{CO}_{2} \mathrm{H} 0 \cdot 6{ }^{\text {A }}$

[^1]The combination of compounds with different n and X for a given b into the same series is now possible if we use the terms

$$
\Sigma R_{\mathrm{D}}\left(\mathrm{C}^{*}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}\right)-\Sigma R_{\mathrm{D}}\left(\mathrm{C}^{*}\left(\mathrm{CH}_{2}\right)_{b} \mathrm{H}\right)
$$

instead of $\Sigma R_{\mathrm{D}}\left(\mathrm{C}^{*}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}\right)$ for the substituents $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}$ when $n>0$. For $n=0$, $\Sigma R_{\mathrm{D}}\left(\mathrm{C}^{*} \mathrm{X}\right)$ is used as before. ${ }^{2}$ When the literature $[M]_{\mathrm{D}}$ values for six different series of monosubstituted alkanes (Table 1) are plotted against ΣR_{D} values by this approach, satisfactory correlations are obtained (Table 2) (the method of calculating the ΣR_{D} values has been described; ${ }^{2}$ the ΣR_{D} values for $n \geqslant 2$ are calculated for the more stable antiperiplanar conformer, ${ }^{2}$ and they give better correlations). The present extension will enhance the usefulness of the empirical equation in the correlations of molecular rotations of open-chain monosubstituted alkanes.

Table 2. Correlations of molecular rotations with bond refractions in monosubstituted alkanes (1) p, number of points used in correlations; r, correlation coefficient

Series	p	r	Slope (m)	Intercept (I)	Series	p	r	Slope (m)	Intercept (I)
$b=2$	56	0.978	3.74	6.18	$b=5$	27	0.950	5.18	1.13
$b=3$	34	0.925	5.43	0.20	$b=6$	10	0.967	7.09	8.79
$b=4$	38	0.910	4.60	1.12	$b=7$	9	0.952	5.21	5.76

Acknowledgments

The author thanks the Alexander von Humboldt Foundation for a research fellowship, and the Max-Planck-Institut für Experimentelle Medizin for the use of its library facilities.

[^0]: \dagger This work was done at the Max-Planck-Institut für Experimentelle Medizin (Göttingen, West Germany) during the author's sabbatical leave.
 ${ }^{1}$ Davis, D. D., and Jensen, F. R., J. Org. Chem., 1970, 35, 3410.
 ${ }^{2}$ Poh, B.-L., Aust. J. Chem., 1980, 33, 1409.
 ${ }^{3}$ Poh, B.-L., Carbohydr. Res., 1982, 108, in press.

[^1]: ${ }^{1}$ Levene, P. A., and Kuna, M., J. Biol. Chem., 1941, 140, 259.
 ${ }^{5}$ Levene, P. A., and Rothen, A., J. Biol. Chem., 1936, 115, 415.
 ${ }^{\text {L L Levene, P. A., and Harris, S. A., J. Bione, A., and Marker, R. E., J. Biol. Chem., 1933, 103, } 299}$
 ${ }^{\text {m Levene, P. A., Rothen, A., and Marker, R. E., J. Biol. Chem., 1937, } 120, ~}$
 o Filipo, J. S., Jr, and Romano, L. J., J. Org. Chem., 1975, 40, 1514.
 ${ }^{\text {P }}$ Levene, P. A., and Marker, R. E., J. Biol. Chem., 1933, $100,685$.
 ${ }^{\text {a }}$ Brewster, J. H., J. Am. Chem. Soc., 1959, 81, 5475.
 ${ }^{\text {A }}$ Levene, P. A., and Rothen, A., J. Org. Chem., 1937, 1, 76.
 ${ }^{\mathrm{B}}$ Ref. 1.
 C Marker, R. E., J. Am. Chem. Soc., 1936, 58, 976.
 In ethanol.
 In heptane.
 In 75% alcohol.
 ${ }^{\text {H Klyne, W., 'Determination of Organic Structure by Physical Methods' }}$
 pp. 73-130 (Academic Press: New York 1955).

