

The cover shows a Conus snail and some peptide toxins, mimetics of which are reviewed by Baell, Duggan, and Lok (p. 179).

AUSTRALIAN JOURNAL OF CHEMISTRY

AN INTERNATIONAL JOURNAL FOR CHEMICAL SCIENCE www.publish.csiro.au/journals/ajc

Review

ω-Conotoxins and Approaches to Their Non-Peptide Mimetics

Jonathan B. Baell, Peter J. Duggan, Y. Phei Lok

Aust. J. Chem. 2004, 57, 179-185

The venom found in Conus snails contains different sets of disulfide-rich peptides, termed conotoxins. The ω-conotoxins have been considered as potential therapeutics for the treatment of chronic pain. However, their mode of administration (spinal injection) has led to the quest for nonpeptidic mimetics, which could ultimately provide a means for oral administration.

Rapid Communications

The Synthesis of 3-O-
(β-D-Glucopyranosyl)- and 3-O-(β -
Laminaribiosyl)-isofagomines, Potent
Inhibitors of a 1,3- β-d-Glucan
endo-Hydrolase
James M. Macdonald, Maria Hrmova, Geoffrey B. Fincher, Robert V. Stick

Aust. J. Chem. 2004, 57, 187-191

4-O-(β-Cellobiosyl)isofagomine is a striking inhibitor against the endo-cellulase Cel5A from Bacillis agaradhaerens. This paper describes the synthesis of two other such inhibitors, an example of which is shown here, by glycosylation of isofagomine at the C3 hydroxyl. The compound pictured was found to be a potent inhibitor of a barley 1,3- β-D-glucan endo-hydrolase ($\mathrm{ID}_{50} 3.1 \mu \mathrm{M}$).

The Selective Binding of Anions to Gemini and Trimeric Surfactants at Air/Solution Interfaces

Betty Thalody, Gregory G. Warr
Aust. J. Chem. 2004, 57, 193-196.

Halide and nitrate ions bind to gemini and trimer surfactants at an interface nearly independant of the degree of oligomerization of the surfactant. However, salicylate, shown in the graphic, markedly decreases in its uptake with increasing surfactant oligomerization but increases with increasing surfactant spacer length.

Full Papers

Some Approaches to Glycosylated Versions of Methyl $\boldsymbol{\beta}$-Acarviosin

Jon K. Fairweather,
Matthew J. McDonough, Robert V. Stick, D. Matthew G. Tilbrook

Aust. J. Chem. 2004, 57, 197-205.

The inhibitory action of various imino sugars against some cellulases can be markedly improved upon by glycosylation. The authors describe their approaches toward the synthesis of a glycosylated version (such as that shown in the figure) of methyl β-acarviosin, in the hope of developing a potent inhibitor of cellulases.

Synthesis and Electrochemical
Characterization of New Thioetherand Ferrocene-Containing
Copolymers
Murray V. Baker, Jinzhen Lu, Touma B. Issa, Pritam Singh, Jelica Strauch

Surface-modified electrodes (SMEs) and their application in such areas as electrocatalysis, sensors, and energy conversion and storage constitute an active research area. Here, the synthesis of several new ferrocenyl copolymers is described, in the hope of developing sufficiently robust SMEs to serve as reference electrodes in acidic media.

Aust. J. Chem. 2004, 57, 207-212.

Evidence for $\mathbf{A u}(\mathrm{I}) \cdots \mathbf{A u}(\mathrm{I})$ Interactions
in a Sterically Congested
Environment: Two-Coordinate
Gold(I) Halide Phosphine Complexes
Raymond C. Bott, Peter C. Healy, Graham Smith

Aust. J. Chem. 2004, 57, 213-218.

The two-coordinate complexes of gold(I) halides with the phosphine ligands tris $(n$-methylphenyl)phosphine $(n=2,4)$ yield a diversity of polymorphic structures and crystal packing arrangements. Despite the bulkiness of the ligand, one polymorph of $\left[\mathrm{AuP}(\mathrm{ptol})_{3} \mathrm{Cl}\right]$ exhibits a short intermolecular $\mathrm{Au}(\mathrm{I}) \cdots \mathrm{Au}(\mathrm{I})$ distance of $3.375(1) \AA$, indicative of a significant aurophilic interaction.

One-dimensional nanoscale semiconductor and photosensitive materials are currently of great interest due to their unique properties and potential applications. The authors report the first synthesis of the novel semiconductor and photosensitive material $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ (nanowires of which are shown) by emulsion-liquid membrane technology.

A New Ring-Reduced
 Tetraprenyltoluquinone and
 a Prenylated Xanthone from
 Garcinia cowa

Fatma Sri Wahyuni, Lindsay T. Byrne, Dachriyanus, Roza Dianita, Junuarty Jubahar, Nordin H. Lajis, Melvyn V. Sargent

The isolation and structural elucidation of two new natural products from the stem bark of the tree Garcinia cowa are described. The reduced toluquinone pictured is particularly interesting since it appears to be the first time that this type of compound has been isolated from a

Aust. J. Chem. 2004, 57, 223-226.

Synthesis of a Novel Pyrrole Oxazole Analogue of the Insecticide Pirate

Wendy A. Loughlin, Michelle E. Murphy, Kathryn E. Elson, Luke C. Henderson

Aust. J. Chem. 2004, 57, 227-232.

$1 \mathrm{R}=\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
$2 \mathrm{R}=\mathrm{H}$

The expedient synthesis of the novel pyrrole oxazole 1 via the N-dealkylated pyrrole oxazole 2 in six steps from pyrrole is reported using a synthetic route that could have potential for the solution-phase combinatorial synthesis of analogues.

An Investigation into the Synthesis of Some Molecules Related to Methyl Acarviosin

Matthew J. McDonough, Robert V. Stick, D. Matthew G. Tilbrook, Andrew G. Watts
terrestrial source.

Acarbose is an impressive inhibitor of several enzymes that process substrates containing α-D-glucosidic linkages and, as such, is used in the treatment of various forms of diabetes. In an attempt to produce putative inhibitors for enzymes that process β-D-glucosidic linkages, the authors report an improved synthesis of a hydroxylated derivative of methyl β-acarviosin (shown).

DNA Scission Chemistry and EPR
 Studies of Four New Bis(2,6-Dimethoxyhydroquinone-
 3-Mercaptoacetic Acid)-Peptide Conjugates

Yu-Fei Song
Aust. J. Chem. 2004, 57, 243-251.

Naturally occurring antitumour antibiotics or their synthetic analogues are of use in chemotherapy owing to their ability to cause a variety of DNA lesions. This paper reports the synthesis of four new tripeptide-cytotoxic acid conjugates and their highly efficient cleavage of DNA, as shown in the graphic. Their mechanism of action is investigated by a variety of methods.

A Study of Raman Excitation Profiles for Soluble cis-Polyacetylene

Gia G. Maisuradze

Aust. J. Chem. 2004, 57, 253-259.

A quantitative analysis of Raman excitation profiles (REPs) for soluble cis-polyacetylene in toluene, the model conducting polymer, was undertaken on the basis of both static and dynamic approaches. The results obtained by these approaches are compared with the results of other studies of soluble and of solid cis- and trans- $(\mathrm{CH})_{x}$. The static approach fits the experimental data better than the dynamic approach.

Quantitative Determination of Aqueous Dodecatungstophosphoric Acid Speciation by NMR Spectroscopy	$\left[\mathrm{PW}_{12} \mathrm{O}_{40}\right]^{3-}$
	$\left[\mathrm{PW}_{11} \mathrm{O}_{39}\right]^{7-}$
	$\left[\mathrm{PW}_{9} \mathrm{O}_{34}\right]^{9-}$
Bradley J. Smith, Vincent A. Patrick	$\mathrm{H}_{3}\left[\mathrm{PW}_{12} \mathrm{O}_{40}\right] \longrightarrow{ }^{\text {a }}$ (${ }^{\text {a }}$
Aust. J. Chem. 2004, 57, 261-268.	$\mathrm{W}_{7} \mathrm{O}_{24}{ }^{6-}$
	$\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right]^{10-}$

The base decomposition of $\alpha-\left[\mathrm{PW}_{12} \mathrm{O}_{40}\right]^{3-}$ through ${ }^{183} \mathrm{~W}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopic measurements is reported. Although the system is dominated by the Keggin ion and the expected hydrolysis products, the measurements suggest that several new equilibrium species may result during the breakdown of the Keggin ion.

Short Communications

$\mathrm{Tp}{ }^{\mathbf{W}}{ }^{\mathrm{IV}} \mathrm{O}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)$: the Missing Member of the Series

Aston A. Eagle, Charles G. Young, Edward R. T. Tiekink

Aust. J. Chem. 2004, 57, 269-271.

Oxo- and thio-Mo/W complexes with sulfur donor ligands are of interest due to their use in novel alkyne/S-donor ligand melding reactions leading to new coordination and organometallic species. Here, the missing member of the series $\mathrm{Tp} * \mathrm{ME}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)$ ($\mathrm{M}=\mathrm{Mo}, \mathrm{W} ; \mathrm{E}=\mathrm{O}, \mathrm{S}$), namely $\mathrm{Tp} * \mathrm{WO}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)$, has been synthesized, and its X-ray structure is reported.

A Revised Structure for the Alkaloid, Tribulusterine, from Tribulus terrestris \mathbf{L}.

John B. Bremner, Waya Sengpracha, Ian Southwell, Chris Bourke, Brian W. Skelton, Allan H. White

The β-carboline alkaloid family includes the alkoloid tribulusterine, present in the fruit of the medicinal plant Tribulus terrestris L. This alkaloid, originally thought to be 1-[(3-hydroxymethyl)-2-furyl]-9H-pyrido[3,4-b]indole (shown), is now shown to be the isomeric alkaloid perlolyrine.

Aust. J. Chem. 2004, 57, 273-276.

Focus

The Production of Designer Enzymes
Victoria McCarl

Aust. J. Chem. 2004, 57, 277.

An important task for the organic chemist is to form complex molecules, often with defined stereochemistries. This article examines the directed evolution method of enzyme engineering, a random approach to generating enzyme diversity that imitates nature's own method of adaptation and evolution.

Author Index

Baell, J. B. 179
Baker, M. V. 207
Bott, R. C. 213
Bourke, C. 273
Bremner, J. B. 273
Burns, C. 278
Byrne, L. T. 223
Dachriyanus, 223
Dianita, R. 223
Ding, Y. 219
Duggan, P. J. 179
Eagle, A. A. 269
Elson, K. E. 227
Fairweather, J. K. 197
Fincher, G. B. 187
Healy, P. C. 213
Henderson, L. C. 227
Hrmova, M. 187

Issa, T. B. 207
Jubahar, J. 223
Lajis, N. H. 223
Liu, H. 219
Liu, L. 219
Liu, Q. 219
Lok, Y. P. 179
Loughlin, W. A. 227
Lu, J. 207
Macdonald, J. M. 187
Maisuradze, G. G. 253
McCarl, V. 277
McDonough, M. J. 197, 233
Murphy, M. E. 227
Patrick, V. A. 261
Qi, J. 219
Sargent, M. V. 223
Sengpracha, W. 273

Singh, P. 207
Skelton, B. W. 273
Smith, B. J. 261
Smith, G. 213
Song, Y.-F. 243
Southwell, I. 273
Stick, R. V. 187, 197, 233
Strauch, J. 207
Thalody, B. 193
Tiekink, E. R. T. 269
Tilbrook, D. M. G. 197, 233
Wahyuni, F. S. 223
Warr, G. G. 193
Watts, A. G. 233
White, A. H. 273
Wu, Q. 219
Young, C. G. 269

