Scaffolds provide an environment for cells to attach, proliferate, and develop for tissue engineering applications. Learn more in the Review by Cooper-White et al. (p. 691) in this issue’s Research Front.

RESEARCH FRONT: Scaffolds, Stem Cells, and Tissue Engineering

Essay

Polymeric Scaffolds for Stem Cell Growth

W T. Godbey

Reviews

Scaffolds, Stem Cells, and Tissue Engineering: A Potent Combination!

Yang Cao, Tristan I. Croll, Justin G. Lees, Bernard E. Tuch, Justin J. Cooper-White

Nanofibres and their Influence on Cells for Tissue Regeneration

Yanping Karen Wang, Thomas Yong, Seeram Ramakrishna

Rapid Communications

Cell Scaffolds with Three-Dimensional Order: The Role of Modelling in Establishing Design Guidelines

Sachin Shanbhag, Jungwoo Lee, Nicholas A. Kotov

Processing Windows for Forming Silk Fibroin Biomaterials into a 3D Porous Matrix

Hyeon Joo Kim, Hyun Suk Kim, Akira Matsumoto, In-Joo Chin, Hyoung-Joon Jin, David L. Kaplan

Focus

Sweet Biofriendly Silicates

Gary A. Baker

Full Papers

Application of the Palladium(0)-Catalyzed Ullmann Cross-Coupling Reaction in a Total Synthesis of (±)-Aspidospermidine and thus Representing an Approach to the Lower Hemisphere of the Binary Indole–Indoline Alkaloid Vinblastine

Martin G. Banwell, David W. Lupton, Anthony C. Willis

Synthesis and Characterization of SAMs and Tethered Bilayer Membranes from Unsymmetrically Substituted 1,2-Dithianes

Christopher J. Burns, Leslie D. Field, Brian J. Petteys, Damon D. Ridley

New Camphor-Derived Selenonium Ylides: Enantioselective Synthesis of Chiral Epoxides

Xin-Liang Li, Yi Wang, Zhi-Zhen Huang

Short Communication

Increased-Valence or Electronic Hypervalence for a Diatomic One-Electron Bond

Either the A atom valence or the B atom valence for the heteronuclear one-electron bond (A·B) exceeds unity. For the ground states of H$_2^+$, H$_2$, and H$_2^-$, the valence for each H atom is unity.

Richard D. Harcourt

Book Review

J. Gerrard 756