Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Environmental and genetic control of morphogenesis in crops: towards models simulating phenotypic plasticity

Michael Dingkuhn A C , Delphine Luquet A , Benedicte Quilot B and Philippe de Reffye A
+ Author Affiliations
- Author Affiliations

A Cirad-amis, TA40/01 Av. Agropolis, 34398 Montpellier CEDEX 5, France.

B INRA, UR Plantes et Systèmes de Culture Horticoles, Domaine St Paul, Site Agroparc, 84914 Avignon Cedex, France.

C Corresponding author. Email: dingkuhn@cirad.fr

Australian Journal of Agricultural Research 56(11) 1289-1302 https://doi.org/10.1071/AR05063
Submitted: 7 March 2005  Accepted: 19 July 2005   Published: 29 November 2005

Abstract

As molecular biologists are realising the importance of physiology in understanding functional genomics of quantitative traits, and as physiologists are realising the formidable prospects for improving their phenotypic models with information on the underlying gene networks, researchers worldwide are working on linked physiological–genetic models. These efforts are in their early methodological stage despite, or because of, the availability of many different types of models, the problem being to bring together the different ways that scientists see the plant. This paper describes some current efforts to adapt phenotype models to the objective of simulating gene-phene processes at the plant or crop scale. Particular emphasis is given to the models’ capacity to simulate genotype × environment interaction and the resulting phenotypic plasticity, assuming that this permits the defining of model parameters that are closer to specific gene action. Three different types of approaches are presented: (1) a generic, mathematical-architectural model called GREENLAB that simulates resource-modulated morphogenesis; (2) an ecophysiological model of peach tree fruit development and filling, parameterised for a mapping population to evaluate the potential of plugging quantitative trait locus (QTL) effects into the model; and (3) the new model Ecomeristem that constructs plant architecture and its phenotypic plasticity from meristem behaviour, the principal hypothesis being that resource limitations and stresses feed back on the meristems. This latter choice is based on the fact that gene expression happens to a large extent in the meristems. The model is evaluated on the basis of preliminary studies on vegetative-stage rice. The different modelling concepts are critically discussed with respect to their ability to simulate phenotypic plasticity and to operate with parameters that approximate specific gene action, particularly in the area of morphogenesis.

Additional keywords: source–sink relationships, competition for resources, carbohydrate reserves, rice, peach, plant architecture, organogenesis, crop models, SARRAH, GREENLAB.


References


Baker DN, Lambert JR, McKinion JM (1983) Gossym: a simulator of cotton crop growth and yield. South Carolina Agriculture Experimental Station Technical Bulletin .

Burleigh SH, Harrison MJ (1999) The down-regulation of MT4-like genes by phosphate occurs systematically and involves phosphate translocation to the shoots. Plant Physiology 119, 241–248.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chapman SC, Hammer GL, Cooper DW (2002) Linking biophysical and genetics models to integrate physiology, molecular biology and plant breeding. ‘Quantitative genetics, genomics and plant breeding’. (Ed. MS Kang) pp. 167–187. (CAB International: Wallingford, UK)

Chelle M, Andrieu B (1998) The nested radiosity model for the distribution of light within plant canopies. Ecological Modelling 111, 75–91.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dauzat J (1994) Radiative transfer simulation on computer models of Elaeis guineensis. Oléagineux 49, 8–90. open url image1

Dauzat J, Eroy MN (1997) Simulation light regime and intercrop yields in coconut based farming systems. European Journal of Agronomy 7, 63–74.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dewitt, TJ ,  and  Scheiner, SM (2003). ‘Phenotypic plasticity. Functional and conceptual approaches.’ (Oxford Life Sciences: USA)

Dingkuhn M, Schnier HF, Datta SKD, Dörffling K, Javellana X, Pamplona R (1990) Nitrogen fertilization of direct-seeded flooded vs. transplanted rice. II. Interactions among canopy properties. Crop Science 30, 1284–1292. open url image1

Dingkuhn M, Penning de Vries FWT, De Datta SK, van Laar HH (1991) Concepts for a new plant type for direct seeded flooded tropical rice. ‘Direct seeded flooded rice in the tropics’. (Ed. IIRR) pp. 17–38. (International Rice Research Institute: Manila, The Philippines)

Dingkuhn M, Penning de Vries FWT (1993) Improvement of rice plant type concepts: systems research enables interaction of physiology and breeding. ‘Systems approaches for agricultural development’. (Ed. FWT Penning de Vries) pp. 9–35. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Dingkuhn M, Jones MP, Johnson DE, Sow A (1998) Growth and yield potential of Oryza sativa and O. glaberrima upland rice cultivars and their interspecific progenies. Field Crops Research 57, 57–69.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dingkuhn M, Johnson DE, Sow A, Audebert AY (1999) Relationships between upland rice canopy characteristics and weed competitiveness. Field Crops Research 61, 79–95.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dingkuhn M, Tivet F, Siband P, Asch F, Audebert A, Sow A (2001) Varietal differences in specific leaf area: a common physiological determinant of tillering ability and early growth vigor? ‘Rice research for food security and poverty alleviation. Proceedings of the International Rice Research Conference’. April 2000. (International Rice Research Institute: Los Baños, The Philippines)


Dingkuhn M, Baron C, Bonnal V, Maraux F, Sarr B, Sultan B, Clopes A, Forest F (2003) Decision support tools for rainfed crops in the Sahel at the plot and regional scales. ‘Decision support tools for smallholder agriculture in sub-Saharan Africa — a practical guide’. (Eds TE Struif Bontkes, MCS Wopereis) pp. 127–139. (CTA: Wageningen, The Netherlands)

Donald CM (1968) The breeding of crop ideotypes. Euphytica 17, 385–403.
Crossref | GoogleScholarGoogle Scholar | open url image1

Drouet JL (2003) MODICA and MODANCA: modelling the three-dimensional shoot structure of graminaceous crops from two methods of plant description. Field Crops Research 83, 215–222.
Crossref | GoogleScholarGoogle Scholar | open url image1

Drouet JL, Pages L (2003) GRAAL: a model of Growth, Architecture and carbon Allocation during vegetative phase of the whole plant model description and parameterisation. Ecological Modelling 165, 147–173.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dusserre J, Crozat Y, Warembourg FR, Dingkuhn M (2002) Effects of shading on sink capacity and yield components of cotton in controlled environments. Agronomie 22, 307–320.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fishman S, Génard M (1998) A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass. Plant, Cell and Environment 21, 739–752.
Crossref | GoogleScholarGoogle Scholar | open url image1

Génard M, Lescourret F, Gomez L, Habib R (2003) Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica). Tree Physiology 23, 373–385.
PubMed |
open url image1

Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2002) Future contributions of crop modelling — from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. European Journal of Agronomy 18, 15–31.
Crossref | GoogleScholarGoogle Scholar | open url image1

He Y, Liao H, Yan X (2003) Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures. Plant and Soil 248, 247–256.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hoogenboom G, White JW (2003) Improving physiological assumptions of simulation models by using gene-based approaches. Agronomy Journal 95, 82–113. open url image1

Jallas E, Martin P, Sequeira R, Turner S, Cretenet M, Gérardeaux E (2000) Virtual COTONS®, the firstborn of the next generation of simulation models. Virtual Worlds 2000, 235–244. open url image1

Johnson G, Dingkuhn M, Jones MP, Mahamane MC (1998) The influence of rice plant type on the effect of weed competition on Oryza sativa and Oryza glaberrima. Weed Research 38, 207–216.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jones MP, Dingkuhn M, Aluko GK, Semon M (1997) Interspecific Oryza sativa L. × O. glaberrima Steud. progenies in upland rice improvement. Euphytica 94, 237–246.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kropff, MJK , van Laar, HH ,  and  Matthews, RB (1994). ‘ORYZA_1. A basic model for irrigated lowland rice production.’ (International Rice Research Institute: Manila, The Philippines)

Kurth W, Sloboda B (1997) Growth grammars simulating trees—an extension of L-systems incorporating local variables and sensitivity. Silva Fennica 31, 285–295. open url image1

Lescourret F, Ben Mimoun M, Génard M (1998) A simulation model of growth at the shoot-bearing fruit level. I. Description and parameterisation for peach. European Journal of Agronomy 9, 173–188.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lindenmayer A (1968) Mathematical models for cellular interaction in development, parts I and II. Journal of Theoretical Biology 18, 280–315.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Luquet D, Zhang BG, Dingkuhn M, Dexet A, Clement-Vidal A (2005) Phenotypic plasticity of rice seedlings: case of phosphorus deficiency. Plant Production Science In press 8,
Crossref |
open url image1

Ming F, Mi G, Zhang F, Zhu L (2002) Differential response of rice plants to low-phosphorus stress and its physiological adaptative mechanism. Journal of Plant Nutrition 25, 1213–1224.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nouvellon Y, Bégué A, Moran MS, Lo Seen D, Rambal S, Luquet D, Chehbouni G, Inoue Y (2000) PAR extinction in shortgrass ecosystems: effects of clumping, sky conditions and soil albedo. Agriculture Forest Meteorology 105, 21–41.
Crossref | GoogleScholarGoogle Scholar | open url image1

Papajorgji, P , Braga, R , Porter, C , Jones, JW ,  and  Beck, HW (2004). Object-oriented approach to crop modelling concepts and examples. Web: csml.ifas.ufl.edu/pdf_files/OOSimulation.pdf. (University of Florida: Gainesville, FL)

Peng S, Khush GS, Cassmann KG (1994) Evolution of the new plant type for increasing yield potential. ‘Breaking the yield barrier’. (Ed. KG Cassmann) pp. 5–20. (International Rice Research Institute: Los Baños, The Philippines)

Penning de Vries, FWT , Jansen, HFM ,  and  Bakema, A (1989). ‘Simulation of ecophysiological processes of growth in several annual crops.’ (Pudoc: Wageningen, The Netherlands)

Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Saarenmaa H, Väkevä J (1996) LIGNUM: a tree model based on simple structural units. Annals of Botany 77, 87–98.
Crossref | GoogleScholarGoogle Scholar | open url image1

Prusinkiewicz P, Lindenmayer A, Hanan J (1988) Developmental models of herbaceous plants for computer imagery purposes. Computer Graphics 22, 141–150. open url image1

Quilot B (2004) Vers une démarche de sélection assistée par des modèles écophysiologiques et génétiques — cas de la qualité organoleptique chez la pêche (Prunus persica (L.) Batsch). PhD thesis, Instiut National Agronomique Paris Grignen, Paris, France.

Quilot B, Génard M, Kervella J, Lescourret F (2002) Ecophysiological analysis of genotypic variation in peach fruit growth. Journal of Experimental Botany 53, 1613–1625.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

de Reffye P, Blaise F, Chemouny S, Jaffuel S, Fourcaud T, Houllier F (1999) Calibration of hydraulic growth model on the architecture of cotton plants. Agronomie 19, 265–280. open url image1

de Reffye P, Edelin C, Francon J, Jaeger M, Puech C (1988) Plant models faithful to botanical structure and development. Computer Graphics 22, 151–158. open url image1

Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyse the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiology 131, 664–675.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Shane MW, Vos MD, Roock SD, Lambers H (2003) Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a derived root system. Plant, Cell and Environment 26, 265–273.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sultan B, Baron C, Dingkuhn M, Sarr B, Janicot S (2005) Agricultural impacts of large-scale variability of the West African monsoon. Agricultural and Forest Meteorology 128, 93–110.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tanaka A, Kawano K, Yamaguchi J (1966) Photosynthesis, respiration, and plant type of the tropical rice plant. Technical Bulletin , International Rice Research Institute, The Philippines.

Tardieu F, Reymond M, Hamard P, Granier C, Muller B (2000) Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature. Journal of Experimental Botany 51, 1505–1514.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tivet F (1996) Etude de la régulation du tallage chez deux génotypes de riz (Oryza sativa L.). DEA thesis, Ecole Nationale Superieure Agronomique, Montpellier, France.

Veldboom LR, Lee M (1996a) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components. Crop Science 36, 1310–1319. open url image1

Veldboom LR, Lee M (1996b) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments. II. Plant height and flowering. Crop Science 36, 1320–1327. open url image1

Wang E, Robertson MJ, Hammer GL, Carberry PS, Holsworth D, Meinke H, Chapman SC, Harvegreaves JNG, Huth NI, Lean GM (2002) Developement of a generic crop model template in the cropping system APSIM. European Journal of Agronomy 18, 121–140.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wissuwa M, Ae N (2001) Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breeding 120, 43–48.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yan HP, Barczi JF, de Reffye P, Hu BG (2002) Fast algorithms of plant computation based on substructure instances. International Conferences in Central Europe on Computer Graphics, Visualization and Computer Vision 10, 145–153. open url image1

Yan H-P, Kang MZ, De Reffye P, Dingkuhn M (2004) A dynamic, architectural plant model simulating resource-dependent growth. Annals of Botany 93, 591–602.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yin X, Stam P, Kropff MJ, Schapendonk AHCM (2003) Crop modeling, QTL mapping, and their complementary role in plant breeding. Agronomy Journal 95, 90–98. open url image1