Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Progress and perspectives for carotenoid accumulation in selected Triticeae species

C. Rodríguez-Suárez A , M. J. Giménez B and S. G. Atienza B C
+ Author Affiliations
- Author Affiliations

A Agrasys S.L. Baldiri i Reixach 10-12, Parc Cientific, Barcelona 08028, Spain.

B Institute for Sustainable Agriculture, CSIC, Plant Breeding Department, Apdo. 4084, Córdoba E-14080, Spain.

C Corresponding author. Email: sgatienza@ias.csic.es

Crop and Pasture Science 61(9) 743-751 https://doi.org/10.1071/CP10025
Submitted: 26 January 2010  Accepted: 9 July 2010   Published: 9 September 2010

Abstract

Plant carotenoids are C40 isoprenoids with multiple biological roles. Breeding for carotenoid content in rice, maize and wheat is a relevant issue, both for their importance in human health and nutrition and for their influence in food colouration in products such as pasta from durum wheat. Regarding human health, vitamin A deficiency (VAD) is one of the major causes of malnutrition in the world. As many as 500 000 children become blind due to VAD each year with many of them dying from VAD-related illness within 1 year.

This review presents the main results in the improvement of endosperm carotenoid levels in rice, maize and wheat considering the methodology used, either transgenic or non-transgenic; the breeding target, such as provitamin A or total carotenoid content; the identification of new carotenogenic genes/alleles related to the available variation for this trait; and the development of new functional markers for marker-assisted selection. A comparative overview among these species and key areas for further improvement are also identified. Carotenoid enhancement in grasses would benefit from comparative studies among Triticeae species since they allow the understanding of the diversity basis. Therefore, the comparative overview given in this work will be relevant not only to rice, maize and wheat but also to other Triticeae species.

Additional keywords: β-carotene, carotenoid engineering, lutein, phytoene synthase, vitamin A, yellow pigment content.


Acknowledgments

Our work in this area is supported by grants (to S.G.A) AGL2008–03720, 200840I137 and P09-AGR-93 from the Spanish Ministry of Science and Innovation (MSI), CSIC, Junta de Andalucía and FEDER. C. Rodríguez-Suárez acknowledges financial support from the MSI (Torres Quevedo program).


References


AACC (American Association of Cereal Chemists) (2000) AACC Official Method 14–50. In ‘Approved methods of the American Association of Cereal Chemists’. 10th edn (AACC: St Paul, MN)

Abdel-Aal ESM, Young JC, Wood PJ, Rabalski I, Hucl P, Falk D, Fregeau-Reid J (2002) Einkorn: a potential candidate for developing high lutein wheat. Cereal Chemistry 79, 455–457.
Crossref | GoogleScholarGoogle Scholar | open url image1

Al-Babili S, Beyer P (2005) Golden Rice – five years on the road – five years to go? Trends in Plant Science 10, 565–573.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Al-Babili S, Hoa TTC, Schaub P (2006) Exploring the potential of the bacterial carotene desaturase CrtI to increase the β-carotene content in Golden Rice. Journal of Experimental Botany 57, 1007–1014.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Al-Delaimy WK, Slimani N, Ferrari P, Key T, Spencer E, Johansson I, Johansson G, Mattisson I, Wirfalt E, Sieri S, Agudo A, Celentano E, Palli D, Sacerdote C, Tumino R, Dorronsoro M, Ocké MC, Bueno-De-Mesquita HB, Overvad K, Chirlaque MD, Trichopoulou A, Naska A, Tjonneland A, Olsen A, Lund E, Skeie G, Ardanaz E, Kesse E, Boutron-Ruault M-C, Clavel-Chapelon F, Bingham S, Welch AA, Martinez-Garcia C, Nagel G, Linseisen J, Quirós JR, Peeters PHM, van Gils CH, Boeing H, van Kappel AL, Steghens J-P, Riboli E (2005) Plasma carotenoids as biomarkers of intake of fruits and vegetables: ecological-level correlations in the European Prospective Investigation into Cancer and Nutrition (EPIC). European Journal of Clinical Nutrition 59, 1397–1408.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. Journal of Experimental Botany 59, 3551–3562.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Alvarez JB, Martin LM, Martin A (1998) Chromosomal localization of genes for carotenoid pigments using addition lines of Hordeum chilense in wheat. Plant Breeding 117, 287–289.
Crossref | GoogleScholarGoogle Scholar | open url image1

Alvarez JB, Martin LM, Martin A (1999) Genetic variation for carotenoid pigment content in the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Plant Breeding 118, 187–189.
Crossref | GoogleScholarGoogle Scholar | open url image1

Atienza SG, Avila CM, Martin A (2007a) The development of a PCR-based marker for PSY1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds. Australian Journal of Agricultural Research 58, 767–773.
Crossref | GoogleScholarGoogle Scholar | open url image1

Atienza SG, Avila CM, Ramirez MC, Martin A (2005) Application of near infrared reflectance spectroscopy to the determination of carotenoid content in tritordeum for breeding purposes. Australian Journal of Agricultural Research 56, 85–89.
Crossref | GoogleScholarGoogle Scholar | open url image1

Atienza SG, Ballesteros J, Martin A, Hornero-Mendez D (2007b) Genetic variability of carotenoid concentration and degree of esterification among tritordeum (×Tritordeum Ascherson et Graebner) and durum wheat accessions. Journal of Agricultural and Food Chemistry 55, 4244–4251.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Atienza SG, Ramirez CM, Hernandez P, Martin A (2004) Chromosomal location of genes for carotenoid pigments in Hordeum chilense. Plant Breeding 123, 303–304.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bai L, Kim E-H, DellaPenna D, Brutnell TP (2009) Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. The Plant Journal 59, 588–599.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Baisakh N, Rehana S, Rai M, Oliva N, Tan J, Mackill DJ, Khush GS, Datta K, Datta SK (2006) Marker-free transgenic (MFT) near-isogenic introgression lines (NIILs) of ‘golden’ indica rice (cv. IR64) with accumulation of provitamin A in the endosperm tissue. Plant Biotechnology Journal 4, 467–475.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Baker R, Günther C (2004) The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends in Food Science & Technology 15, 484–488.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ballesteros J, Ramirez MC, Martinez C, Atienza SG, Martin A (2005) Registration of HT621, a high carotenoid content tritordeum germplasm line. Crop Science 45, 2662–2663.
Crossref | GoogleScholarGoogle Scholar | open url image1

Borrelli GM, De Leonardis AM, Fares C, Platani C, Di Fonzo N (2003) Effects of modified processing conditions on oxidative properties of semolina dough and pasta. Cereal Chemistry 80, 225–231.
Crossref | GoogleScholarGoogle Scholar | open url image1

Borrelli GM, De Leonardis AM, Platani C, Troccoli A (2008) Distribution along durum wheat kernel of the components involved in semolina colour. Journal of Cereal Science 48, 494–502.
Crossref | GoogleScholarGoogle Scholar | open url image1

Borrelli GM, Troccoli A, Di Fonzo N, Fares C (1999) Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chemistry 76, 335–340.
Crossref | GoogleScholarGoogle Scholar | open url image1

Breithaupt DR (2008) Xanthophylls in poultry feeding. In ‘Carotenoids. Vol. IV’. (Eds G Britton, S Liaaen-Jensen, H Pfander) pp. 255–264. (Birkhäuser Verlag: Berlin)

Britton G (2008) Functions of intact carotenoids. In ‘Carotenoids. Vol. IV’. (Eds G Britton, S Liaaen-Jensen, H Pfander) pp. 189–212. (Birkhäuser Verlag: Berlin)

Buckner B, San Miguel P, Janick-Buckner D, Bennetzen JL (1996) The y1 gene of maize codes for phytoene synthase. Genetics 143, 479–488.
PubMed |
open url image1

Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Critical Reviews in Food Science and Nutrition 49, 313–326.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chander S, Guo YQ, Yang XH, Zhang J, Lu XQ, Yan JB, Song TM, Rocheford TR, Li JS (2008) Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theoretical and Applied Genetics 116, 223–233.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cong L, Wang C, Chen L, Liu H, Yang G, He G (2009) Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry 57, 8652–8660.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cuttriss A , Mimica J , Howitt C , Pogson B (2006) Carotenoids. In ‘The structure and function of plastids’. (Eds RR Wise, JK Hoober) pp. 315–334. (Springer: Dordrecht, The Netherlands)

Datta S, Datta K, Parkhi V, Rai M, Baisakh N, Sahoo G, Rehana S, Bandyopadhyay A, Alamgir M, Ali M, Abrigo E, Oliva N, Torrizo L (2007) Golden rice: introgression, breeding, and field evaluation. Euphytica 154, 271–278.
Crossref | GoogleScholarGoogle Scholar | open url image1

Digesù AM, Platani C, Cattivelli L, Mangini G, Blanco A (2009) Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. Journal of Cereal Science 50, 210–218.
Crossref | GoogleScholarGoogle Scholar | open url image1

Elouafi I, Nachit MM, Martin LM (2001) Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135, 255–261.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Enserink M (2008) Tough lessons from golden rice. Science 320, 468–471.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Flagg EW, Coates RJ, Greenberg RS (1995) Epidemiologic studies of antioxidants and cancer in humans. Journal of the American College of Nutrition 14, 419–427.
PubMed |
open url image1

Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research 43, 228–265.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fratianni A, Irano M, Panfili G, Acquistucci R (2005) Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements. Journal of Agricultural and Food Chemistry 53, 2373–2378.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gallagher CE, Matthews PD, Li F, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiology 135, 1776–1783.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer. Journal of the National Cancer Institute 87, 1767–1776.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends in Biotechnology 26, 139–145.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Glémin S, Bataillon T (2009) A comparative view of the evolution of grasses under domestication. New Phytologist 183, 273–290.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319, 330–333.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

He X, Wang J, Ammar K, Pena RJ, Xia X, He Z (2009a) Allelic variants at the Psy-A1 and Psy-B1 loci in durum wheat and their associations with grain yellowness. Crop Science 49, 2058–2064.
Crossref | GoogleScholarGoogle Scholar | open url image1

He XY, He ZH, Ma W, Appels R, Xia XC (2009b) Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Molecular Breeding 23, 553–563.
Crossref | GoogleScholarGoogle Scholar | open url image1

He XY, Zhang YL, He ZH, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theoretical and Applied Genetics 116, 213–221.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Bohm V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. Journal of Agricultural and Food Chemistry 50, 6663–6668.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hessler TG, Thomson MJ, Benscher D, Nachit MM, Sorrells ME (2002) Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Science 42, 1695–1700.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hidalgo A, Brandolini A (2008) Kinetics of carotenoids degradation during the storage of einkorn (Triticum monococcum L. ssp. monococcum) and bread wheat (Triticum aestivum L. ssp. aestivum) flours. Journal of Agricultural and Food Chemistry 56, 11 300–11 305.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hidalgo A, Brandolini A, Pompei C, Piscozzi R (2006) Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). Journal of Cereal Science 44, 182–193.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology 4, 210–218.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Howitt CA, Cavanagh CR, Bowerman AF, Cazzonelli C, Rampling L, Mimica JL, Pogson BJ (2009) Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Functional & Integrative Genomics 9, 363–376.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Howitt CA, Pogson BJ (2006) Carotenoid accumulation and function in seeds and non-green tissues. Plant, Cell & Environment 29, 435–445.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Juliano BO (1993) ‘Rice in human nutrition.’ (The Food and Agricultural Organization of the United Nations: Rome) Available at: www.fao.org/inpho/content/documents/vlibrary/t0567e/t0567e00.htm

Karplus VJ , Deng XW (2008) ‘Agricultural biotechnology in China. Origins and prospects.’ (Springer: New York)

Lamberts L, Delcour JA (2008) Carotenoids in raw and parboiled brown and milled rice. Journal of Agricultural and Food Chemistry 56, 11 914–11 919.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E, Remesy C (2006a) Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. European Journal of Agronomy 25, 170–176.
Crossref | GoogleScholarGoogle Scholar | open url image1

Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E, Remesy C (2006b) Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking. Journal of Agricultural and Food Chemistry 54, 1710–1715.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li F, Murillo C, Wurtzel ET (2007) Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiology 144, 1181–1189.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li F, Tsfadia O, Wurtzel ET (2009) The phytoene synthase gene family in the grasses: subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signaling & Behavior 4, 208–211.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li FQ, Vallabhaneni R, Wurtzel ET (2008a) PSY3, a new member of the phytoene synthase gene family conserved in the poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiology 146, 1333–1345.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li FQ, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET (2008b) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiology 147, 1334–1346.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mares D, Mrva K (2008) Genetic variation for quality traits in synthetic wheat germplasm. Australian Journal of Agricultural Research 59, 406–412.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mares DJ, Campbell AW (2001) Mapping components of flour colour in Australian wheat. Australian Journal of Agricultural Research 52, 1297–1309.
Crossref | GoogleScholarGoogle Scholar | open url image1

Martín A, Alvarez JB, Martin LM, Barro F, Ballesteros J (1999) The development of tritordeum: a novel cereal for food processing. Journal of Cereal Science 30, 85–95.
Crossref | GoogleScholarGoogle Scholar | open url image1

Martin A, Sánchez-Monge Laguna E (1982) Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv durum. Euphytica 31, 261–267.
Crossref | GoogleScholarGoogle Scholar | open url image1

Matthews PD , Wurtzel ET (2007) Biotechnology of food colorant production. In ‘Food colorants: chemical and functional properties’. (Ed. C Socaciu) pp. 347–398. (CRC Press: Boca Raton, FL)

Meng E , Loyns A , Peña RJ (2009) Wheat quality in the developing world: trends and opportunities. In ‘Wheat facts and futures’. (Eds J Dison, H-J Braun, P Kosina, J Crouch) pp. 26–41. (CIMMYT: Mexico, D.F.)

Naqvi S, Zhu CF, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa DP, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America 106, 7762–7767.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nishino H, Murakoshi M, Tokuda H, Satomi Y (2009) Cancer prevention by carotenoids. Archives of Biochemistry and Biophysics 483, 165–168.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchlife E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology 23, 482–487.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. The Plant Cell 15, 1795–1806.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Panfili G, Fratianni A, Irano M (2004) Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. Journal of Agricultural and Food Chemistry 52, 6373–6377.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 97, 238–245.
Crossref | GoogleScholarGoogle Scholar | open url image1

Patil RM, Oak MD, Tamhankar SA, Sourdille P, Rao VS (2008) Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum). Molecular Breeding 21, 485–496.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pistón F, Leon E, Lazzeri PA, Barro F (2008) Isolation of two storage protein promoters from Hordeum chilense and characterization of their expression patterns in transgenic wheat. Euphytica 162, 371–379.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pixley K (2009) The Tortoise and the Hare? Conventional and transgenic approaches to breeding provitamin A in maize. Available at: www.harvestplus.org/content/tortoise-and-hare-conventional-and-transgenic-approaches-breeding-provitamin-maize

Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theoretical and Applied Genetics 114, 525–537.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Randolph LF, Hand DB (1940) Relation between carotenoid content and number of genes per cell in diploid and tetraploid corn. Journal of Agricultural Research 60, 51–64. open url image1

Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Somers DJ, Knox RE, Singh AK (2008) Association mapping of yellow pigment in an elite collection of durum wheat cultivars and breeding lines. Genome 51, 1016–1025.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sandmann G, Romer S, Fraser PD (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metabolic Engineering 8, 291–302.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schaub P, Al-Babili S, Drake R, Beyer P (2005) Why is Golden Rice golden (yellow) instead of red? Plant Physiology 138, 441–450.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Serpen A, Gokmen V, Karagoz A, Koksel H (2008) Phytochemical quantification and total antioxidant capacities of emmer (Triticum dicoccon Schrank) and einkorn (Triticum monococcum L.) wheat landraces. Journal of Agricultural and Food Chemistry 56, 7285–7292.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Singh A, Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theoretical and Applied Genetics 118, 1539–1548.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stein AJ, Sachdev HPS, Qaim M (2006) Potential impact and cost-effectiveness of Golden Rice. Nature Biotechnology 24, 1200–1201.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tan J, Baisakh N, Oliva N, Parkhi V, Rai M, Torrizo L, Datta K, Datta SK (2005) The screening of rice germplasm, including those transgenic rice lines which accumulate β-carotene in their polished seeds, for their carotenoid profile. International Journal of Food Science & Technology 40, 563–569.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tang GW, Qin J, Dolnikowski GG, Russell RM, Grusak MA (2009) Golden Rice is an effective source of vitamin A. American Journal of Clinical Nutrition 89, 1776–1783.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Troccoli A, Borrelli GM, De Vita P, Fares C, Di Fonzo N (2000) Durum wheat quality: a multidisciplinary concept. Journal of Cereal Science 32, 99–113.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vallabhaneni R, Gallagher CE, Licciardello N, Cuttriss AJ, Quinlan RF, Wurtzel ET (2009) Metabolite sorting of germplasm collection reveals the hydroxylase3 locus as a new target for maize provitamin A biofortification. Plant Physiology 151, 1635–1645.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vallabhaneni R, Wurtzel ET (2009) Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiology 150, 562–572.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vaughan DA, Lu B-R, Tomooka N (2008) The evolving story of rice evolution. Plant Science 174, 394–408. open url image1

Vishnevetsky M, Ovadis M, Vainstein A (1999a) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends in Plant Science 4, 232–235.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vishnevetsky M, Ovadis M, Zuker A, Vainstein A (1999b) Molecular mechanisms underlying carotenogenesis in the chromoplast: multilevel regulation of carotenoid-associated genes. The Plant Journal 20, 423–431.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Welsch R, Wust F, Bar C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiology 147, 367–380.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wong JC, Lambert RJ, Wurtzel ET, Rocheford TR (2004) QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theoretical and Applied Genetics 108, 349–359.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yan JB, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang XH, Skinner DJ, Fu ZY, Mitchell S, Li Q, Fernandez MGS, Zaharieva M, Babu R, Fu Y, Palacios N, Li JS, DellaPenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nature Genetics 42, 322–327.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theoretical and Applied Genetics 117, 1361–1377.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang W, Dubcovsky J (2008) Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theoretical and Applied Genetics 116, 635–645.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang WJ, Lukaszewski AJ, Kolmer J, Soria MA, Goyal S, Dubcovsky J (2005) Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theoretical and Applied Genetics 111, 573–582.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang YL, Wu YP, Xiao YG, He ZH, Zhang Y, Yan J, Xia XC, Ma CX (2009) QTL mapping for flour and noodle colour components and yellow pigment content in common wheat. Euphytica 165, 435–444.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zhu CF, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences of the United States of America 105, 18 232–18 237.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ziegler RG (1989) A review of epidemiologic evidence that carotenoids reduce the risk of cancer. Journal of Nutrition 119, 116–122.
PubMed |
open url image1