Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Autumn dormancy regulates the expression of cas18, vsp and corF genes during cold acclimation of lucerne (Medicago sativa L.)

Zhi-ying Liu A B F , Guo-feng Yang C F , Xi-liang Li B , Ya-fei Yan B , Juan Sun D , Run Gao B , Qi-zhong Sun B and Zong-li Wang B E G
+ Author Affiliations
- Author Affiliations

A Ecology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, P.R. China.

B National Forage Improvement Center, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, P.R. China.

C College of Life Sciences, Qingdao Agricultural University, Key Laboratory of Plant Biotechnology in Universities of Shandong Province, Qingdao 266109, P.R. China.

D College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, P.R. China.

E China Animal Health and Epidemiology Center, Qingdao 266032, P.R. China.

F Co-first authors.

G Corresponding author. Email: wangzongli@sina.com

Crop and Pasture Science 67(6) 666-678 https://doi.org/10.1071/CP15289
Submitted: 2 September 2015  Accepted: 23 December 2015   Published: 28 June 2016

Abstract

As a global forage legume, lucerne (alfalfa, Medicago sativa L.) is valuable for studying the evolutionary and ecological mechanisms of plant adaptation to freezing, owing to the characteristic of contrasting winter hardiness induced by autumn dormancy. Autumn-dormant lucerne plants often exhibit greater cold tolerance than non-dormant plants under natural field conditions. The study examined the autumn shoot growth of four diverse lucerne cultivars, and the influence of two sampling dates in late autumn, three sampling positions and four autumn-dormancy categories on cas18, vsp and corF gene transcripts during the first year of lucerne establishment. Results showed that in field-grown lucerne, non-dormant and highly non-dormant cultivars had greater shoot growth than a dormant cultivar in autumn. The level of transcripts of cas18 (which encodes a dehydrin-like protein) was highest in dormant cultivars and lowest in semi-dormant cultivars in both November and December; in particular, the cas18 transcripts in the crown remained highest in both November and December. The level of transcripts of vsp (which encodes vegetative storage protein) in all dormant cultivar tissues was highest in both November and December. In semi-dormant cultivars, the expression of vsp in the taproot increased compared with the lateral root and crown in November. The corF transcript in the dormant cultivar was markedly higher than in the semi-dormant cultivar and almost zero in the non-dormant and highly non-dormant cultivars. These results indicate that the significant impact of autumn dormancy and plant position on gene expression of cas18, vsp and corF occurring during autumn hardening, and continuing low temperatures, are likely to have significant consequences on lucerne productivity and its long-term persistence.

Additional keywords: alfalfa, cold acclimation, fall dormancy.


References

Angus AA, Hirsch AM (2010) Insights into the history of the legume‐betaproteobacterial symbiosis. Molecular Ecology 19, 28–30.
Insights into the history of the legume‐betaproteobacterial symbiosis.Crossref | GoogleScholarGoogle Scholar | 20078769PubMed |

Antikainen M, Griffith M (1997) Antifreeze protein accumulation in freezing‐tolerant cereals. Physiologia Plantarum 99, 423–432.
Antifreeze protein accumulation in freezing‐tolerant cereals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFWqu7Y%3D&md5=81b7c57ab0207e9078bd3278bad107f7CAS |

Ariss JJ, Vandemark GJ (2007) Assessment of genetic diversity among nondormant and semidormant alfalfa populations using sequence-related amplified polymorphisms. Crop Science 47, 2274–2284.
Assessment of genetic diversity among nondormant and semidormant alfalfa populations using sequence-related amplified polymorphisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhsr7N&md5=269945c892b4b39ed28804a593c6ebefCAS |

Avice J-C, Dily FL, Goulas E, Noquet C, Meuriot F, Volenec J, Cunningham S, Sors T, Dhont C, Castonguay Y (2003) Vegetative storage proteins in overwintering storage organs of forage legumes: roles and regulation. Canadian Journal of Botany 81, 1198–1212.
Vegetative storage proteins in overwintering storage organs of forage legumes: roles and regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVKqtbk%3D&md5=7564f6fea4b45c24b9d8de7423223652CAS |

Bewley JD (2002) Root storage proteins, with particular reference to taproots. Canadian Journal of Botany 80, 321–329.
Root storage proteins, with particular reference to taproots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlWgurk%3D&md5=86ee201e4a029c68d96ca514088bd02eCAS |

Binnie SC, Grossnickle SC, Roberts R (1994) Fall acclimation patterns of interior spruce seedlings and their relationship to changes in vegetative storage proteins. Tree Physiology 14, 1107–1120.
Fall acclimation patterns of interior spruce seedlings and their relationship to changes in vegetative storage proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhvFSmt7g%3D&md5=1952183f4c8128fa456bd59ba5c16f11CAS | 14967621PubMed |

Boschma S, Williams R (2008) Using morphological traits to identify persistent lucernes for dryland agriculture in NSW, Australia. Crop & Pasture Science 59, 69–79.
Using morphological traits to identify persistent lucernes for dryland agriculture in NSW, Australia.Crossref | GoogleScholarGoogle Scholar |

Bouchart V, Macduff JH, Ourry A, Svenning MM, Gay AP, Simon JC (1998) Seasonal pattern of accumulation and effects of low temperatures on storage compounds in Trifolium repens. Physiologia Plantarum 104, 65–74.
Seasonal pattern of accumulation and effects of low temperatures on storage compounds in Trifolium repens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFyrtLg%3D&md5=0aa449a2977bfe4b15032de8b247da9cCAS |

Brown L, Hoveland C, Karnok K (1990) Harvest management effects on alfalfa yield and root carbohydrates in three Georgia environments. Agronomy Journal 82, 267–273.
Harvest management effects on alfalfa yield and root carbohydrates in three Georgia environments.Crossref | GoogleScholarGoogle Scholar |

Brummer EC, Moore KJ, Bjork NC (2002) Agronomic consequences of dormant–nondormant alfalfa mixtures. Agronomy Journal 94, 782–785.
Agronomic consequences of dormant–nondormant alfalfa mixtures.Crossref | GoogleScholarGoogle Scholar |

Capomaccio S, Barone P, Reale L, Veronesi F, Rosellini D (2009) Isolation of genes from female sterile flowers in Medicago sativa. Sexual Plant Reproduction 22, 97–107.
Isolation of genes from female sterile flowers in Medicago sativa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtF2lu7w%3D&md5=b957172f8c1e01b46178d334b37472ddCAS | 20033460PubMed |

Castonguay Y, Nadeau P (1998) Enzymatic control of soluble carbohydrate accumulation in cold-acclimated crowns of alfalfa. Crop Science 38, 1183–1189.
Enzymatic control of soluble carbohydrate accumulation in cold-acclimated crowns of alfalfa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFyhsb8%3D&md5=a8bac8750b144a3a3afd54eee3b05f91CAS |

Castonguay Y, Nadeau P, Laberge S (1993) Freezing tolerance and alteration of translatable mRNAs in alfalfa (Medicago sativa L.) hardened at subzero temperatures. Plant & Cell Physiology 34, 31–38.

Castonguay Y, Laberge S, Nadeau P, Vézina L-P (1994) A cold-induced gene from Medicago sativa encodes a bimodular protein similar to developmentally regulated proteins. Plant Molecular Biology 24, 799–804.
A cold-induced gene from Medicago sativa encodes a bimodular protein similar to developmentally regulated proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslWktrw%3D&md5=fdfae9223b7fe28dbda62c776d706412CAS | 8193304PubMed |

Castonguay Y, Nadeau P, Lechasseur P, Chouinard L (1995) Differential accumulation of carbohydrates in alfalfa cultivars of contrasting winterhardiness. Crop Science 35, 509–516.
Differential accumulation of carbohydrates in alfalfa cultivars of contrasting winterhardiness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsVers70%3D&md5=9b3585c655b29a550c688af6cef73af4CAS |

Castonguay Y, Laberge S, Brummer EC, Volenec JJ (2006) Alfalfa winter hardiness: A research retrospective and integrated perspective. Advances in Agronomy 90, 203–265.
Alfalfa winter hardiness: A research retrospective and integrated perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFyrtb4%3D&md5=a622e271224decb4dedd5bf19ab42918CAS |

Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany 55, 225–236.
Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslWq&md5=181b00ff22bc2ec2af74be6649e22ce5CAS | 14673035PubMed |

Christophe S, Jean-Christophe A, Annabelle L, Alain O, Marion P, Anne-Sophie V (2011) ‘Plant N fluxes and modulation by nitrogen, heat and water stresses: A review based on comparison of legumes and non legume plants.’ (InTech Open Access Publisher: Rijeka, Croatia)

Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiologia Plantarum 100, 291–296.
Dehydrins: a commonalty in the response of plants to dehydration and low temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFersbo%3D&md5=029cbc139d8118ec7648bc600fefe57eCAS |

Cooke JEK, Weih M (2005) Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology. New Phytologist 167, 19–30.
Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtl2nsbw%3D&md5=d50584617f4fc65d8509a86fa2c9b6e5CAS |

Cunningham S, Nadeau P, Castonguay Y, Laberge S, Volenec J (2003) Raffinose and stachyose accumulation, galactinol synthase expression, and winter injury of contrasting alfalfa germplasms. Crop Science 43, 562–570.
Raffinose and stachyose accumulation, galactinol synthase expression, and winter injury of contrasting alfalfa germplasms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1ertbc%3D&md5=5d86c71c4ca57ff9085b5d6ab809b87fCAS |

Dhont C, Castonguay Y, Nadeau P, BÉLANGER G, Drapeau R, Laberge S, Avice JC, Chalifour FP (2006) Nitrogen reserves, spring regrowth and winter survival of field-grown alfalfa (Medicago sativa) defoliated in the autumn. Annals of Botany 97, 109–120.
Nitrogen reserves, spring regrowth and winter survival of field-grown alfalfa (Medicago sativa) defoliated in the autumn.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12gu74%3D&md5=d9472efbd075e5e167aa6e294986e980CAS | 16260440PubMed |

Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. The Plant Cell Online 21, 972–984.
Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFylurc%3D&md5=a6a245b8278527c3bf39473d4be34f01CAS |

Dubé M-P, Castonguay Y, Cloutier J, Michaud J, Bertrand A (2013) Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.). Theoretical and Applied Genetics 126, 823–835.
Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.).Crossref | GoogleScholarGoogle Scholar | 23188214PubMed |

Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell Online 14, 1675–1690.
Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslChurk%3D&md5=ef5e429b254194feb07f1540153ed597CAS |

Galau GA, Close TJ (1992) Sequences of the cotton group 2 LEA/RAB/dehydrin proteins encoded by Lea3 cDNAs. Plant Physiology 98, 1523–1525.
Sequences of the cotton group 2 LEA/RAB/dehydrin proteins encoded by Lea3 cDNAs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnitV2ktg%3D%3D&md5=fee648161c74651f398d9b258e3ba2bbCAS | 16668827PubMed |

Gangola MP, Khedikar YP, Gaur PM, Båga M, Chibbar RN (2013) Genotype and growing environment Interaction shows a positive correlation between substrates of Raffinose Family Oligosaccharides (RFO) biosynthesis and their accumulation in chickpea (Cicer arietinum L.) seeds. Journal of Agricultural and Food Chemistry 61, 4943–4952.
Genotype and growing environment Interaction shows a positive correlation between substrates of Raffinose Family Oligosaccharides (RFO) biosynthesis and their accumulation in chickpea (Cicer arietinum L.) seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1ehsLw%3D&md5=9157beb9acd013702ec7a8bef3b6d65eCAS | 23621405PubMed |

Gomez L, Faurobert M (2002) Contribution of vegetative storage proteins to seasonal nitrogen variations in the young shoots of peach trees (Prunus persica L. Batsch). Journal of Experimental Botany 53, 2431–2439.
Contribution of vegetative storage proteins to seasonal nitrogen variations in the young shoots of peach trees (Prunus persica L. Batsch).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVKgsQ%3D%3D&md5=53e70159f4d6f4ff78c63418836cc80cCAS | 12432035PubMed |

Goormachtig S, Lievens S, Van de Velde W, Van Montagu M, Holsters M (1998) Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases. The Plant Cell Online 10, 905–915.
Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktl2htbs%3D&md5=00a46c7b364da7418d29032a3b8355faCAS |

Goulas E, Le Dily F, Teissedre L, Corbel G, Robin C, Ourry A (2001) Vegetative storage proteins in white clover (Trifolium repens L.): quantitative and qualitative features. Annals of Botany 88, 789–795.
Vegetative storage proteins in white clover (Trifolium repens L.): quantitative and qualitative features.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvValurs%3D&md5=2acddd5befac647130346a3cb33e80e7CAS |

Graber LF (1927) Organic food reserves in relation to the growth of alfalfa and other perennial herbaceous plants. Wisconsin Agricultural Experiment Station Research Bulletin No. 80.

Gupta R, Deswal R (2014) Refolding of β-stranded class I chitinases of Hippophae rhamnoides enhances the antifreeze activity during cold acclimation. PLoS One 9, e91723
Refolding of β-stranded class I chitinases of Hippophae rhamnoides enhances the antifreeze activity during cold acclimation.Crossref | GoogleScholarGoogle Scholar | 24626216PubMed |

Haagenson D, Cunningham S, Joern B, Volenec J (2003) Autumn defoliation effects on alfalfa winter survival, root physiology, and gene expression. Crop Science 43, 1340–1348.
Autumn defoliation effects on alfalfa winter survival, root physiology, and gene expression.Crossref | GoogleScholarGoogle Scholar |

Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior 6, 1503–1509.
Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVGhsL4%3D&md5=17ffa8064daf922d182d6b8379f2df2dCAS |

Ibarra-Herrera CC, Aguilar O, Rito-Palomares M (2011) Application of an aqueous two-phase systems strategy for the potential recovery of a recombinant protein from alfalfa (Medicago sativa). Separation and Purification Technology 77, 94–98.
Application of an aqueous two-phase systems strategy for the potential recovery of a recombinant protein from alfalfa (Medicago sativa).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVCktg%3D%3D&md5=ce5dbb74a946b29e7803bb264732e9a2CAS |

Iftime D, Hannah MA, Peterbauer T, Heyer AG (2011) Stachyose in the cytosol does not influence freezing tolerance of transgenic Arabidopsis expressing stachyose synthase from adzuki bean. Plant Science 180, 24–30.
Stachyose in the cytosol does not influence freezing tolerance of transgenic Arabidopsis expressing stachyose synthase from adzuki bean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVans7nP&md5=adaed876c50be2f01f3b9e931704c020CAS | 21421343PubMed |

Klotke J, Kopka J, Gatzke N, Heyer A (2004) Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation–evidence for a role of raffinose in cold acclimation. Plant, Cell & Environment 27, 1395–1404.
Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation–evidence for a role of raffinose in cold acclimation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1OqtA%3D%3D&md5=4a2254d8fc8c724f2040b5e466a84a82CAS |

Knaupp M, Mishra KB, Nedbal L, Heyer AG (2011) Evidence for a role of raffinose in stabilizing photosystem II during freeze–thaw cycles. Planta 234, 477–486.
Evidence for a role of raffinose in stabilizing photosystem II during freeze–thaw cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyrtrfI&md5=8f9b22435a678ef0a3e4354fe461f295CAS | 21533754PubMed |

Kwan G, Pisithkul T, Amador-Noguez D, Barak J (2015) De novo amino acid biosynthesis contributes to Salmonella enterica growth in alfalfa seedling exudates. Applied and Environmental Microbiology 81, 861–873.
De novo amino acid biosynthesis contributes to Salmonella enterica growth in alfalfa seedling exudates.Crossref | GoogleScholarGoogle Scholar | 25416761PubMed |

Laberge S, Castonguay Y, Vézina L-P (1993) New cold-and drought-regulated gene from Medicago sativa. Plant Physiology 101, 1411–1412.
New cold-and drought-regulated gene from Medicago sativa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVantL4%3D&md5=b4a8ed45a27b5e840abeaa50837678b1CAS | 8310076PubMed |

Lauriault L, Kirksey R, VanLeeuwen D (2009) Year-round irrigation and fall dormancy affects alfalfa yield in a semiarid, subtropical environment. Forage and Grazing Lands 7,
Year-round irrigation and fall dormancy affects alfalfa yield in a semiarid, subtropical environment.Crossref | GoogleScholarGoogle Scholar |

Li F, Lei H, Zhao X, Tian R, Li T (2012) Characterization of three sorbitol transporter genes in micropropagated apple plants grown under drought stress. Plant Molecular Biology Reporter 30, 123–130.
Characterization of three sorbitol transporter genes in micropropagated apple plants grown under drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGitbg%3D&md5=db86e10233d03b35c80091fe7fd4c5a3CAS |

Liu Z, Ge X-X, Wu X-M, Kou S-J, Chai L-J, Guo W-W (2013) Selection and validation of suitable reference genes for mRNA qRT-PCR analysis using somatic embryogenic cultures, floral and vegetative tissues in citrus. Plant Cell, Tissue and Organ Culture 113, 469–481.
Selection and validation of suitable reference genes for mRNA qRT-PCR analysis using somatic embryogenic cultures, floral and vegetative tissues in citrus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslWhtL0%3D&md5=c54f8530710c9e86b7024fc2579f0453CAS |

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=e0a9ef72ebfe6a983826f149811955b7CAS | 11846609PubMed |

Márquez-Ortiz J, Lamb J, Johnson L, Barnes D, Stucker R (1999) Heritability of crown traits in alfalfa. Crop Science 39, 38–43.
Heritability of crown traits in alfalfa.Crossref | GoogleScholarGoogle Scholar |

Meuriot F, Noquet C, Avice JC, Volenec JJ, Cunningham SM, Sors TG, Caillot S, Ourry A (2004) Methyl jasmonate alters N partitioning, N reserves accumulation and induces gene expression of a 32‐kDa vegetative storage protein that possesses chitinase activity in Medicago sativa taproots. Physiologia Plantarum 120, 113–123.
Methyl jasmonate alters N partitioning, N reserves accumulation and induces gene expression of a 32‐kDa vegetative storage protein that possesses chitinase activity in Medicago sativa taproots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFSktw%3D%3D&md5=213fbd3514dc11cc946e2ae632a6c284CAS | 15032883PubMed |

Mohapatra SS, Poole RJ, Dhindsa RS (1987) Changes in protein patterns and translatable messenger RNA populations during cold acclimation of alfalfa. Plant Physiology 84, 1172–1176.
Changes in protein patterns and translatable messenger RNA populations during cold acclimation of alfalfa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltlWhs7w%3D&md5=e0d2714fb2a44199de4f0b2b0e9c71f2CAS | 16665580PubMed |

Mohapatra SS, Wolfraim L, Poole RJ, Dhindsa RS (1989) Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiology 89, 375–380.
Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtV2gsLk%3D&md5=0c439ed00aa5e75ed5f8b52724a31e3cCAS | 16666542PubMed |

Monroy AF, Castonguay Y, Laberge S, Sarhan F, Vezina LP, Dhindsa RS (1993) A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiology 102, 873–879.
A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmt1Wlt7w%3D&md5=e82dc80883004eafe01d5af9775fe652CAS | 8278537PubMed |

Nakamura T, Ishikawa M, Nakatani H, Oda A (2008) Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. Plant Physiology 147, 391–401.
Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1ektr4%3D&md5=f66dcbe3c7e53492d45ca8f5c44a1e0fCAS | 18359848PubMed |

Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Molecular Biology 45, 263–279.
Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Kgtrk%3D&md5=7c70b6cb202617652e6b8d15d78e1ec2CAS | 11292073PubMed |

Oakley RA, Westover H (1921) ‘Effect of the length of day on seedlings of alfalfa varieties and the possibility of utilizing this as a practical means of identification.’ (US Government Printing Office: Washington, DC)

Ourry A, Macduff JH, Volenec JJ, Gaudillere JP (2001) Nitrogen traffic during plant growth and development. In ‘Plant nitrogen’. pp. 255–273. (Springer: Dordrecht, The Netherlands)

Pembleton KG, Sathish P (2014) Giving drought the cold shoulder: a relationship between drought tolerance and fall dormancy in an agriculturally important crop. AoB Plants 6, plu012
Giving drought the cold shoulder: a relationship between drought tolerance and fall dormancy in an agriculturally important crop.Crossref | GoogleScholarGoogle Scholar | 24790133PubMed |

Pennycooke JC, Jones ML, Stushnoff C (2003) Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiology 133, 901–909.
Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVaquro%3D&md5=fda636ef912c4adddfa0087dcf4b87b7CAS | 14500789PubMed |

Pennycooke JC, Cheng H, Stockinger EJ (2008) Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiology 146, 1242–1254.
Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVKgtLg%3D&md5=185b186a162909213619903bd661cb87CAS | 18218976PubMed |

Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research 11, 185–197.

Peters S, Keller F (2009) Frost tolerance in excised leaves of the common bugle (Ajuga reptans L.) correlates positively with the concentrations of raffinose family oligosaccharides (RFOs). Plant, Cell & Environment 32, 1099–1107.
Frost tolerance in excised leaves of the common bugle (Ajuga reptans L.) correlates positively with the concentrations of raffinose family oligosaccharides (RFOs).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtValtbfF&md5=0f06386e65b7b7fc7a0c3d1624846b55CAS |

Peters S, Mundree SG, Thomson JA, Farrant JM, Keller F (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. Journal of Experimental Botany 58, 1947–1956.
Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFeksLg%3D&md5=cfe13c369e98bc943f9b0333330b4c60CAS | 17452754PubMed |

Radović J, Sokolović D, Marković J (2009) Alfalfa-most important perennial forage legume in animal husbandry. Biotechnology in Animal Husbandry 25, 465–475.
Alfalfa-most important perennial forage legume in animal husbandry.Crossref | GoogleScholarGoogle Scholar |

Rimi F, Macolino S, Leinauer B, Lauriault LM, Ziliotto U (2014) Fall dormancy and harvest stage impact on alfalfa persistence in a subtropical climate. Agronomy Journal 106, 1258–1266.
Fall dormancy and harvest stage impact on alfalfa persistence in a subtropical climate.Crossref | GoogleScholarGoogle Scholar |

Rohde P, Hincha DK, Heyer AG (2004) Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia‐0 and C24) that show differences in non‐acclimated and acclimated freezing tolerance. The Plant Journal 38, 790–799.
Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia‐0 and C24) that show differences in non‐acclimated and acclimated freezing tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlCrs70%3D&md5=0899988d6475485cda05a2b778a3dc5fCAS | 15144380PubMed |

Russelle M (2001) After an 8,000-year journey, the “Queen of Forages” stands poised to enjoy renewed popularity. American Scientist 89, 252–261.
After an 8,000-year journey, the “Queen of Forages” stands poised to enjoy renewed popularity.Crossref | GoogleScholarGoogle Scholar |

Schwab P, Barnes D, Sheaffer C (1996) The relationship between field winter injury and fall growth score for 251 alfalfa cultivars. Crop Science 36, 418–426.
The relationship between field winter injury and fall growth score for 251 alfalfa cultivars.Crossref | GoogleScholarGoogle Scholar |

Seker H, Yolcu H, Acikgoz E (2014) Primary growth parameters of three alfalfa cultivars adapted to highland climatic conditions. Journal of Agronomy & Crop Science 201, 219–227.

Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology 14, 194–199.
Molecular responses to drought, salinity and frost: common and different paths for plant protection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGlu7w%3D&md5=75d65e66fcde424af66750513baedaa3CAS | 12732320PubMed |

Sheaffer C, Barnes D, Warnes D, Lueschen W, Ford H, Swanson D (1992) Seeding-year cutting affects winter survival and its association with fall growth score in alfalfa. Crop Science 32, 225–231.
Seeding-year cutting affects winter survival and its association with fall growth score in alfalfa.Crossref | GoogleScholarGoogle Scholar |

Sprague M, Fuelleman R (1941) Measurements of recovery after cutting and fall dormancy of varieties and strains of alfalfa, Medicago sativa. Agronomy Journal 33, 437–447.
Measurements of recovery after cutting and fall dormancy of varieties and strains of alfalfa, Medicago sativa.Crossref | GoogleScholarGoogle Scholar |

Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi‐Shinozaki K, Shinozaki K (2002) Important roles of drought‐and cold‐inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal 29, 417–426.
Important roles of drought‐and cold‐inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVagsrg%3D&md5=588eb67c09dbea8447f7b00c14ca58baCAS | 11846875PubMed |

Teuber L, Taggard K, Gibbs L, McCaslin M, Peterson M, Barnes D (1998) Fall dormancy, Standard tests to characterize alfalfa cultivars. In ‘36th North American Alfalfa Improvement Conference’. Bozeman, MT. (North American Alfalfa Improvement Conference: St. Paul, MN, USA)

Tian WM, Peng SQ, Wang XC, Shi MJ, Chen YY, Hu ZH (2007) Vegetative storage protein in Litchi chinensis, a subtropical evergreen fruit tree, possesses trypsin inhibitor activity. Annals of Botany 100, 1199–1208.
Vegetative storage protein in Litchi chinensis, a subtropical evergreen fruit tree, possesses trypsin inhibitor activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVyhtbfN&md5=d138e6df7819c4e7e09d6f6409c4caf7CAS | 17913726PubMed |

Volenec J, Ourry A, Joern B (1996) A role for nitrogen reserves in forage regrowth and stress tolerance. Physiologia Plantarum 97, 185–193.
A role for nitrogen reserves in forage regrowth and stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFOrurw%3D&md5=b87485295c9010fcf4697fce273bfe28CAS |

Volenec J, Cunningham S, Haagenson D, Berg W, Joern B, Wiersma D (2002) Physiological genetics of alfalfa improvement: past failures, future prospects. Field Crops Research 75, 97–110.
Physiological genetics of alfalfa improvement: past failures, future prospects.Crossref | GoogleScholarGoogle Scholar |

Wang C, Ma B, Yan X, Han J, Guo Y, Wang Y, Li P (2009) Yields of alfalfa varieties with different fall-dormancy levels in a temperate environment. Agronomy Journal 101, 1146–1152.
Yields of alfalfa varieties with different fall-dormancy levels in a temperate environment.Crossref | GoogleScholarGoogle Scholar |

Weishaar MA, Brummer EC, Volenec JJ, Moore KJ, Cunningham S (2005) Improving winter hardiness in nondormant alfalfa germplasm. Crop Science 45, 60–65.
Improving winter hardiness in nondormant alfalfa germplasm.Crossref | GoogleScholarGoogle Scholar |

Welling A, Moritz T, Palva ET, Junttila O (2002) ) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiology 129, 1633–1641.
) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmtl2gtro%3D&md5=45fc6ff5821b2ec1e4ee070adc03e9adCAS | 12177476PubMed |

Wolfraim LA, Langis R, Tyson H, Dhindsa RS (1993) cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells. Plant Physiology 101, 1275–1282.
cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1CmsLs%3D&md5=c60b7ee3c692a32b001fce692c02233cCAS | 8310062PubMed |

Zhang S, Shi Y, Cheng N, Du H, Fan W, Wang C (2015) De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy. PLoS One 10, e0122170

Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53, 247
Salt and drought stress signal transduction in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhtbc%3D&md5=610251aace60f501264c9ff03b1cc781CAS | 12221975PubMed |