
Accessory publication. Derivation and Validation of the APSIM Regional 

Cumulative Biomass Indices 
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APSIM Scenario Procedure 

 

Growing conditions within the Ingham, Ayr, Mackay and Bundaberg regions are quite 

diverse. To address the challenge of using APSIM to derive a regional proxy index of 

cumulative biomass, a cumulative biomass index was derived for many different 

scenarios. Though not exhaustive, these scenarios represented a large range of 

environmental and management conditions found in the region. Table A1.1 details how 

these scenarios were generated for each region.  

 

In the case of Ingham, scenarios were generated from two irrigation scenarios (rainfed 

and irrigated), two soils (a Red Ferrosol and a Yellow Chromosol, (Inman-Bamber et al. 

(2000)),  two cane lodging settings (no lodging and lodging) as detailed in Inman-

Bamber et al. (2004), two flood settings (flooding and no flooding) and three climate 

stations (Macknade, Ingham and Bambaroo). Flooding damage was simulated by 

decreasing radiation use efficiency by 30% when more than 1000 mm was recorded 

during a period of continuous rain. Allocations of 2 ML/ha and 4 ML/ha were 

considered for the irrigated Ingham scenarios with irrigation occurring at two stress 

trigger points of 80% and 110%. This means that irrigation was applied when the loss in 

biomass gain between irrigations or after rainfall, was 80% on the one hand or no loss 

(110%) on the other. Planting dates from April through to October were also 

I T
10.1071/AR06081_ AC©CSIRO 2007Accessory Publication: Aust. J. Agric. Res., 2007, 58(2), 87-94.



considered. Collectively, these settings generated 672 irrigated and 168 rainfed 

scenarios.  
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The scenarios for the remaining locations were generated similarly though the soil, 

planting, water allocation and stress triggers varied between regions. In the case of Ayr, 

a 30% reduction in radiation use efficiency (RUE) was considered after 50 t ha-1 

biomass was reached in the simulation. This was done to account for the observation 

that RUE is often reduced in ageing crops possibly by lodging, stalk loss and reduced 

leaf N (Park et al. 2005). Table A1.2 gives the locations of all climate stations 

considered in this analysis. Details of other soil properties used in the simulations were 

similar to those used by Inman-Bamber et al. (2000). 

 

In total 840 scenarios were considered for Ingham and Ayr, 960 scenarios for Mackay 

and 384 scenarios for Bundaberg. Similar though less intensive combinatorial type 

approaches for identifying suitable model input parameters have been considered for 

modelling the production of soy beans and sorghum (Hansen and Jones 2000, Potgieter 

et al. 2005). 

 

Cross-validated Scenario Selection Procedure 

Each scenario in Table A1.1 generated a biomass index that represented cumulative 

crop growth immediately preceding the forecast date. Owing to the large number of 

biomass indices generated, a selection procedure was required to identify suitable 

scenarios and the corresponding biomass indices for predicting regional sugarcane 

yields. To assist this task, a cross-validated correlation coefficient (Myers 1990) 
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was computed between the regional yield yi for year i ∈(1976, 1977, ...,2003) and the 

predicted yield 

49 

iy−
) , generated from a regression against yield with each simulated 

biomass index. The subscript '-i' in 

50 

iy−
) signifies the predicted yield was computed from 

a regression model that was built in isolation of data from year i. As an example, 

51 

1976y−
)  

represents the predicted yield for 1976 that was generated from a regression model built 

from actual yields (dependent variable) and a simulated biomass index (independent 

variable) using data from 1977 to 2003. The process was repeated until each data point 

has been omitted and predicted. The cross-validated correlation coefficient therefore 

provides an indication of the predictive capability of the model. The denominator in Eqn 

A1.1 is a function of the standard deviation of actual yields (s
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58 y) and the standard 

deviation of the leave-one-out cross-validated predicted yields (
iys

−
) ). Cumulative 

biomass indices that produced higher cross-validated correlation coefficients across the 

range of forecast dates were 'shortlisted'. The selected or 'shortlisted' indices were 

averaged to produce a predictive biomass index (X
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62 B) that was used to produce 

operational forecasts via a simple linear regression y) =a + b XB. 63 
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Assessing the Significance of the Predictive Biomass Indices 

For each region, a large search space containing biomass indices from each scenario 

from Table A1.1 was generated owing to the broad range of environmental and 

management conditions. Whilst the cross-validation approach within the scenario 

selection procedure will make it challenging for an index to correlate well with actual 



yields purely by chance, there remains no guarantee that a chance correlation has not 

occurred. To quantify this risk a Monte Carlo procedure (Potgieter et al. 2005; 

Everingham et al. 2003; Good, 1997) was implemented. This involved computing the 

area A
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0 under a piecewise linear function. The vertical axis of this function was 

generated by plotting the cross-validated correlation coefficient (rcv) between the final 

predictive biomass index (XB) and actual regional yield (y). This was repeated for each 

forecast date (horziontal axis). Figure A1.1 for example shows the rcv between actual 

Ingham yields and the Ingham predictive biomass index. To compare how well the 

forecasting approach compared against a chance forecasting system, the regional yields 

were randomly permuted (jumbled) and correlated with each biomass index in the 

search space at each forecast date. The maximum area obtained from the randomised 

yields with each scenario was computed. This process was repeated 1000 times to 

generate the areas A1, A2,..., A1000. The number of areas Ai for i = 1,2,...,1000 greater 

than or equal to A0 were counted. If the approach taken to generate the operational 

predictive biomass indices is sound, only a small proportion of areas should exceed or 

equal A0. This proportion is equivalent to a P-value or significance level of the 

predictive index. 

 

Results 

The biomass indices that gave the highest rcv with regional yields across the range of 

forecast dates were extracted from the search space. Eight of the 840 biomass indices 

were selected Ingham, 17 out of the 840 biomass indices were selected for Ayr, 6 from 

the 960 indices for Mackay and 10 from the 384 indices for Bundaberg. The 

environmental and management settings that these indices span are listed in Table A1.3.    
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The significance level of each regional predictive biomass indices was computed by the 

Monte Carlo procedure. Significance levels of 0.007, 0.001, 0.072 and 0.000 were 

obtained for Ingham, Ayr, Mackay and Bundaberg, respectively. These small 

significance levels indicate the performance of the predictive biomass indices is 

unlikely a consequence of chance. 

 

Summary 

This appendix has described what can be considered a statistical agro-meteorological  

approach for deriving and validating proxy indicators of regional crop growth. Owing to 

the large spatial scale that the indices represent, statistical methods were needed to 

identify the most suitable APSIM outputs for predicting crop size and to quantify the 

soundness of this selection procedure. Although the discriminant analysis paper centers 

on yield forecasts produced in December, the biomass input variables to the 

discriminant procedure were selected on performance measures of these indices across a 

range of lead-times from December through to April. In December knowledge about 

crop category is adequate for marketers, but at later lead-times regression approaches 

(e.g. see Everingham et al. 2005) are needed to give more refined estimates of crop size. 
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Table A1.1 Crop simulation scenarios 140 
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Treatment factors and levels applied to the APSIM-Sugarcane model to represent the 

range of growing conditions in Ingham (irrigated and rainfed), Ayr, Mackay and  

Bundaberg. Soils are abbreviated as follows: Rferro = Red Ferrosol soil; Rderm = Red 

Dermosol soil; Ychrom = Yellow Chromosol  (Inman-Bamber et al. 2000). 

 

Location Factor Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Total

Ingham Plant date Apr May Jun Jul Aug Sep Oct 7
(irrigated) Soil Rferro Ychrom 2

Lodging No lodge Lodge 2
Allocation 2 ML/ha 4 ML/ha 2
Flooding Yes No 2
Climate Macknade Ingham Bambaroo 3
Irrig cycle 7 days 1
Stress trigger % 80 110 2

Total Number of Scenarios 672
Ingham Plant date Apr May Jun Jul Aug Sep Oct 7
(rainfed) Soil Rferro Ychrom 2

Lodging No lodge Lodge 2
Allocation 0 1
Flooding Yes No 2
Climate Macknade Ingham Bambaroo 3

Total Number of Scenarios 168
Ayr Plant date Apr May Jun Jul Aug Sep Nov 7

Soil Rderm 1
Lodging Nolodge Lodge 2
Allocation No limit 1
Flooding Yes No 2
Climate Ayr Millaroo Clare Kalamia Shirbourne 5
Irrig cycle 0 days 1
Stress trigger % 100 90 80 3
Late RUE reduction Yes No 2

Total Number of Scenarios 840
Mackay Plant date May Jul Sep Nov 4

Soil Rferro 1
Lodging No lodge Lodge 2
Allocation 0 ML/ha 2 ML/ha 4 ML/ha 6 ML/ha 4
Flooding Yes No 2
Climate Gargett Pleystowe Farleigh Proserpine Sarina 5
Irrig cycle 7 days 1
Stress trigger % 70 90 100 3

Total Number of Scenarios 960
Bundaberg Plant date Jun Jul Aug Sep Oct Nov 6

Soil Rferro 1
Lodging No lodge Lodge 2
Allocation Variable 1
Flooding Yes No 2
Climate Bundaberg Childers Fairymead Maryborough 4
Irrig cycle 7 days 1
Stress trigger % 70 80 90 100 4

Total Number of Scenarios 384  146 
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Table A1.2 Weather Stations 147 
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149 

Locations of official climate recording stations from which daily climate data were 

supplied to the APSIM sugarcane crop model. 

 Weather Station  

Region  Name Coordinates 

Ingham Macknade 146°15’ -18°36’ 

 Ingham 146°10’  -18°39’ 

 Bambaroo 146°11’ -18°53’ 

Ayr Ayr 147°24’ -19°34’ 

 Millaroo 147°16’ -20°03’ 

 Clare 147°13’ -19°47’ 

 Kalamia 147°25’ -19°31’ 

 Shirbourne 147°06’ -19°36’ 

Mackay Gargett 148°45’ -21°09’ 

 Pleystowe 149°03’ -21°09’ 

 Farleigh 149°06’ -21°06’ 

 Prosperpine 148°32’ -20°30’ 

 Sarina 149°13’ -21°25’ 

Bundaberg Bundaberg 152°23’  -24°51’ 

 Childers 152°17’ -25°24’ 

 Fairymead 152°24’ -24°48’ 

 Maryborough 152°41’ -25°33’ 

150 



 Table A1.3 Scenarios used in operational forecasts 150 

151 

152 

Scenarios that were averaged to predict regional yields for Ingham, Ayr, Mackay and 

Bundaberg.  
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Ingham Bambaroo Rferro Oct No 2 Yes 80 7d No 
Bambaroo Rferro Oct No 2 No 80 7d No 
Bambaroo Rferro Oct No 4 Yes 80 7d No 
Bambaroo Rferro Oct No 4 No 80 7d No 
Bambaroo Rferro Oct Yes 2 Yes 80 7d No 
Bambaroo Rferro Oct Yes 2 No 80 7d No 
Bambaroo Rferro Oct Yes 4 Yes 80 7d No 
Bambaroo Rferro Oct Yes 4 No 80 7d No 

Ayr Ayr Rderm Jun No No limit Yes 90 0d Yes
Ayr Rderm Jun No No limit Yes 90 0d No
Ayr Rderm Jun No No limit No 90 0d Yes

Kalamia Rderm Aug No No limit Yes 90 0d Yes
Kalamia Rderm Aug No No limit No 90 0d Yes
Kalamia Rderm Sep No No limit Yes 90 0d Yes

Ayr Rderm Sep No No limit Yes 90 0d No
Kalamia Rderm Sep No No limit Yes 90 0d No
Kalamia Rderm Sep No No limit No 90 0d Yes

Ayr Rderm Sep No No limit No 90 0d No
Kalamia Rderm Sep No No limit No 90 0d No
Kalamia Rderm Sep Yes No limit Yes 90 0d Yes

Ayr Rderm Sep Yes No limit Yes 90 0d No
Kalamia Rderm Sep Yes No limit Yes 90 0d No
Kalamia Rderm Sep Yes No limit No 90 0d Yes

Ayr Rderm Sep Yes No limit No 90 0d No
Kalamia Rderm Sep Yes No limit No 90 0d No

Mackay Gargett Rferro Sep No 4 Yes 100 7d No 
Gargett Rferro Sep No 4 No 100 7d No 
Gargett Rferro Sep Yes 4 Yes 100 7d No 
Gargett Rferro Sep Yes 4 No 100 7d No 
Gargett Rferro Sep Yes 6 Yes 90 7d No 
Gargett Rferro Sep Yes 6 No 90 7d No 

Bundaberg Bundaberg Rferro Sep No Variable Yes 70 7d No 
Bundaberg Rferro Sep No Variable Yes 80 7d No 
Bundaberg Rferro Sep No Variable No 70 7d No 
Bundaberg Rferro Sep No Variable No 80 7d No 
Bundaberg Rferro Sep Yes Variable Yes 70 7d No 
Bundaberg Rferro Sep Yes Variable Yes 80 7d No 
Bundaberg Rferro Sep Yes Variable No 70 7d No 
Bundaberg Rferro Sep Yes Variable No 80 7d No 
Bundaberg Rferro Oct Yes Variable Yes 80 7d No 
Bundaberg Rferro Oct Yes Variable No 80 7d No  153 
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Fig. A1.1 The cross-validated correlation coefficient between Ingham yields and the 

predictive biomass index used operationally at different forecast dates. The area beneath 

this line is denoted by A0.  

 




